Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2023 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.9.1-pp39-pypy39_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.1-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.1-pp38-pypy38_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.1-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.1-pp37-pypy37_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.1-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.1-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pedalboard-0.9.1-cp312-cp312-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.9.1-cp312-cp312-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.1-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.9.1-cp312-cp312-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pedalboard-0.9.1-cp312-cp312-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.1-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.9.1-cp311-cp311-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pedalboard-0.9.1-cp311-cp311-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pedalboard-0.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.1-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.9.1-cp311-cp311-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.9.1-cp311-cp311-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.1-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.9.1-cp310-cp310-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.9.1-cp310-cp310-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.1-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.9.1-cp310-cp310-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.9.1-cp310-cp310-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.1-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.9.1-cp39-cp39-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pedalboard-0.9.1-cp39-cp39-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pedalboard-0.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.1-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.9.1-cp39-cp39-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.9.1-cp39-cp39-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.1-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.9.1-cp38-cp38-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pedalboard-0.9.1-cp38-cp38-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pedalboard-0.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.1-cp38-cp38-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.9.1-cp38-cp38-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.9.1-cp38-cp38-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.1-cp37-cp37m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.9.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.1-cp37-cp37m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.9.1-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.9.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.1-cp36-cp36m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.9.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 fcbfc965fc07ce260835bcd85d327ee2562ef2d0ddb3467c25cd9a1a3a0c231f
MD5 1f7b1b32736e1eb7d8ce30d743548940
BLAKE2b-256 6c3e39d90e9fab71fe91ba8beff8841ee38f37c7156d65ce8f46a03e908f03c7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 56747e2b53847ac265685d26a26433e59be46216a95540e19c58a6af6da3371e
MD5 dcdc14deccc27df96b711ccceebd40f4
BLAKE2b-256 9c2bcd05d59638a095c6813e74baef84db63447029c7c8ddfda43e3c13656099

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4a5942276e6cb31422c87d49fa5820500fc2e8603ff7d20d3fa8ea8b47366a1f
MD5 e0c04a2baa262edf2fc742464d09ef14
BLAKE2b-256 b72d75a4078557463d6ed1713ba8bfe80b752cb41d1e179a31ca8f450555721f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 91e5c2af347f26164e5715abd8bd96e0361521e16a54dda03fdb9d8c91a59bbb
MD5 d5900242396a2ea32385e2f36743c2e5
BLAKE2b-256 ba889aba779fc38e2a2b4118dd3840083f3f9461c7b1d2b9242845477ef825ff

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 fb0411c4fa441153f568e770ea69f9f56b32fb063f7f665d01a6a657c46a393e
MD5 2e31f62d9cf42d07a1bf1a228a4312ca
BLAKE2b-256 7a1e63246a92fe978ac56801f6b01e77998a4b5ce861e3756aca2883796bde87

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 12e64b6c2599aaee42a25c7db23381f70cec3a926cc8e0564d29014d108d63db
MD5 1eb9e504081805518a3546e2695e873b
BLAKE2b-256 db462ce85a67417aa59df43b895e43d8bef76eb6acec212a7670d89a8458ec82

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b8aaf094c02bbb36af4cbb4aef5d56fb8bfec82ac466144c6f27f0a85e46e044
MD5 26daf7d237fa79db53e9f10d524d1193
BLAKE2b-256 c0c66ee64efb80b7e3ca72cdf9ae964ee4961cb9b150d8f9984f7ca360c696b5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 adb9c5616aa7ac8734cea59c30f6b91be9429981b9d5be41e2d9c989b18923ef
MD5 f2fc46cf8c89fe37ad05ead333bca82b
BLAKE2b-256 d813e6ee9e9623047c695740258030bb327c261fd860c5de6b3587ed7832a55a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 179994cccc2cebf8bbe1d357be5e636e5a834bb0bb7ceacfc3eb0c7b54bfe22b
MD5 cc26fbb76415ed1e2d1787f26654a72f
BLAKE2b-256 7130cef1a5f383ce72c833a4941235584e78267fca15f992dc923eac4124bf05

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99ef5fda8205996893abd16faa7213118a4e8d67ab843a4ca125aade68c4d207
MD5 ddc5483cadeb4bf21e490687daf94ffb
BLAKE2b-256 925075a222db27d6e020ffb1a7dd7ba0ffd37bac4eea6ecb7b62b7589975620c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8f4bec11f5f29147489145a7d343faeada1801ede61f21ae250d3639f84948c1
MD5 a0ad2ba6e4ba79c734c224f32050dcb1
BLAKE2b-256 21bc234d20a0bb6b6e79812907cf34c19ad5972544e392db21139a72538635dd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 57a99ac03a314194ba366e7aba6740bbdca7d1e12cef985144d90193a0118b47
MD5 2545219e15e40885ecdd650d13d847e7
BLAKE2b-256 b9c04533b617a39474d60921bcf7d852bd0c5af0f69a9328f76e2f449f5f6e31

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ee86aeebc66bb8ce75486582c5349d57753b09cdb1be3adab8b27578d2441c47
MD5 d3292dbc02eb1cbae23557ff7f6023cf
BLAKE2b-256 c282249cd0b010c9e078ca0e4c58a2c5816a346ecfaf54e48884f5ac26832495

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3e54af98dff8c99db0d53dba860105945be1869f6b0b182d24f583480b5f2213
MD5 4d0a0c1f19b37e375946755803311836
BLAKE2b-256 84e2cc6402bd4691fd5de3139b3c981f9c29c802069ba754cbacdca2c3a9c2e2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4f4f067ed97ede7dfbc64332271edfd29c33851b6c12219b9ac285d31a05ad8d
MD5 72c437cc25d982b7a4687c1cb5c5146b
BLAKE2b-256 52cab92105d5edcca953ae586ccb3a82c3e990ba08603a191583dddab41bb901

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b0cfebdc3d6b2904829211501965195c97bba22e53940a70a081ac89e9bc9b6
MD5 f14e468f2ff52e463dda30e92fe1302b
BLAKE2b-256 7d5ce90775f43f1f4c20cf6741e078e14add8bbe953760969fe9f5646fdd297b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 904dcd1445725e9540779c7c018e47c5d123dccd5687fc3c859b0f3887a5e488
MD5 d666ed8b1fb23efefbd2658cd7d275b9
BLAKE2b-256 239c101ac7a37ce3df7e231f0197778a3f3b8935dc3877053c09d3592178dba5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b3343d65b4cfff190e349ef98ff52c679e3a0ec5fe417714789c7fb20590d04b
MD5 897bf8329469c27a8a38b1aa3d4d35d5
BLAKE2b-256 685d0c0c54926b35b58dd28d395d40b14abbd641e8042c99fdcd7854507be11a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 60f05f235842ac622208cd3b078dbad6b5b53476ab6de6b22954190b937b1b14
MD5 1cd8a6c7607031abd95928ec258bc589
BLAKE2b-256 0d5b7193c04808f7dda2a70b7be92cdf4da04bcbe8eea2d5656a094bb3915be4

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 f022085bcbf7d32adae8f9614da5103c1a2d959f0722be1f54e327e27e4f94c7
MD5 2dd47f4ed7d2277970a817439db0f964
BLAKE2b-256 f2d2a8802f3638f5d9aedbd101bbf81b0cd588074e72c9013a9949fe6c02cbe8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fc38fb4d16c0b088d6bdf589ac19962d825780bb8eafad717eba948e65d3e63d
MD5 82b14fb80adfb35ca28be5cb246f697f
BLAKE2b-256 563a3a1549b95431bd12f6202a4c98c67cf547bea1a0e54011a5b90deaa5401a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a67fead8716049ac81e30b3a98feaf77040eb17f991e8303acd7ff8ba83a5783
MD5 6fd0b5a5ecd12156ebb300e1575621da
BLAKE2b-256 8c7e621f8520740001aa14dd8740b42f6feb6c8c4a4592c284e37c8379d78eb1

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4df3a199d2ca4823c0268ad4acea257bc257809b5d2f0b0f60b6e93c64a2b878
MD5 0b8b2e782665e72dbd78b8e049a3ba64
BLAKE2b-256 74b9d38160f1bba162b186303b1965059a20da935fa9713461949cbdd816c0ba

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39c19420363fd8e212fc14133068b9bf912731eedc567657ae01c5bd0c12bfc3
MD5 bd19efd693047594e4fe4ff5a32b2fdb
BLAKE2b-256 4a3128bd388950ed16ed8b49bdcf20946039babbe8640028b7cc4f75614878ef

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 71dccdc4c1ee2de57f96052d9ed7ab51046fd8cd52b4d3681ed08e82d0cfe539
MD5 13f027ce5d4cdf92a3f7eb16713c8a5e
BLAKE2b-256 36496b63cd751ace3d928e547640b4ba601d6c53b21a34672d727d8600252d7f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1eb0454d71b681e688da83f72a8e17681272de103bed874cae3701688bafe3d4
MD5 5292da5ebd58bd99e0192ff7ac2fbc35
BLAKE2b-256 cd18f3529e68cdcfcf186122c22433026a34a218b5521c4b6cbad2c953ce1b10

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ae985e6e370f7edd8e0897e0286ed59ad9fb85626ee83228b67f2f4cef5bfa0f
MD5 a00af3e2d9fa5c47ee04c0235cbb3f62
BLAKE2b-256 bcd7ac863a51b99b1dfb98bb5eb0905944b2175c27fe3ec93517ef238b94665e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 ff6c977708136779bde373902208816fa0d3bc7bee098f7c38ccea96b073abdb
MD5 903ed813e702fa3e587330b86201df5d
BLAKE2b-256 1bf7d652d2182a83e3dffe8512e3a44097670758476f47193a4ccb8d1e22d1af

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ad0af222cbd860b0f6176779847c450ed6a536a9fc5534e13092a46f0254ca04
MD5 24c692a0ef7342054522d2b726d5ffcd
BLAKE2b-256 6457e7240255f0e787a32ca3f1b02f31b3eadd6080e4af1cf6689a4a872a3948

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8622f88ff1ed48561e374cad17a54ea43743874eec8f0ab614dde7fb82f589e0
MD5 ca6b92844ab6d20cf619023de401465b
BLAKE2b-256 e424972a09ea5e303bec949e09ca61741de0c3dce7d8c52ac8d0c2fa04004972

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a70f63dacc29e23e63a9cccae48442bffeabbc45fd318baf1d673e6cadb42051
MD5 eeb4cfd184a7724795eea95dda08f685
BLAKE2b-256 30c53614aae7cda7ae1caf805676930c7c71148e3a4e64adb7dd08ade64e3444

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 766006953e66bbb49f613f1cee52642867dc8d9c9346cc6e09c751de5bf1281d
MD5 b48175c1789af633247f7647aab7fa9b
BLAKE2b-256 812b7e4dbbbfff4a5b2beed2a3302529cc0eb916085c43b448585fc6439e5705

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5d0d75f31f82be0e61123720bc63bcc1a739e178a38f84dc5020cb5290e75bbc
MD5 38d65986f18bd69ef03d60600063a078
BLAKE2b-256 bd4c0192715e8fd5a7acc204cb1c2d866486a02f7df0e11c488ab53bb355e512

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d3aeadda61770217269d21ebd47285ebeac21bf49dca41d4f1aacb1af501ac3d
MD5 b708a53a9baf9a404c3e43ddc48744cd
BLAKE2b-256 16893a2f2ffe8cb7a67f0acff23c85d9893e3f0de3a0aeec3549ba985814bca9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4a3c631d10ac19dbfedda269e37c3b01b04cba227b4c75f2783c5f9c2d5200dd
MD5 5c6cff1f8397b8b2bfcdab8031e91c15
BLAKE2b-256 d56c044f2886929d6a8cff9bc74d2431e8c7466b9745ea8b5d6bd6ea2f3c1544

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 394c2d8c235c0138e8ec724f37856fec243a5374ee4ba8c6c57d4e603a738f74
MD5 8427d5573a272caa0bb59314ea9d6f38
BLAKE2b-256 9c35670b059fe3bc6357b9e1f0675d20de50b235dbb84dd40918d00aa35e595e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a4431137ef9cbea11eeb30c8a7e30ff7bf1180a97b51074bd0f7c755ccc59b74
MD5 b6b77e5685de1983cd590b3c47572316
BLAKE2b-256 cebf957d1b6145acf4847270afc08a345d58ce3466b4393ca3546a397059d68f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e578d4eba983276a6f58e02c991a4d4f9ce08b6d8f837bf722e1fd34e341ede9
MD5 ec4983893393b154b445bd52ff78fd58
BLAKE2b-256 0772bf05557edc8682044c3ddea7105136163edca57e3069fd0eb961297cf92a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 79f37c9526add5a21666c6e26fd6d40cf11a001a775de82fa6fbd057d708fe44
MD5 56fd9e81c634deee48488c99fd63c98c
BLAKE2b-256 58337d57b526c5f96fbd4a6ab7859ed792da6168e2f3ea53cce26812637644c0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f08ede90e2359a505db1cd6b4b5f39c1acd2870f1480f675c5ec9d7b5276f631
MD5 22f3d8f612539e851068732f7a33ca66
BLAKE2b-256 d973ab0768ed2e6192a6cb8b10f91d664874a36cb917ba858874c7abb7b4e1c3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d5c1770f42f00113476abb977e2c5568bdd3f7fce1a6b2f49c2c861fb5aec6d4
MD5 023093823bd93b4650bc60c13fefdf40
BLAKE2b-256 6fcd61ab8373d0d522f79313aebfab9e3e499e3c24fe31d8c67414b3d71f6bb8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 efae7684383d1c4a922fc451ffa6366a75a339790cffa484fff84b0f877a0c58
MD5 92b3c86659b5337be34477043cbeac74
BLAKE2b-256 0f5218255ceb4b1c1d162e9f11f43ee533d7f46c2d309c5a334f5f0397dbbeb7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8759130f9512e7ab074d230679a6f640417ad205536246faeeacf7b214dc283a
MD5 b804b394de53ce469053508fbac969f2
BLAKE2b-256 eafb457cbcad4168c0f72d715f22a61e99248706da66151e23c95391d49ccb0b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 b26fdbff23fcd74d26646e425d48e851ee04512654dc2382fa9a172315960dbd
MD5 c9d4793033eaf9bca29482f4cb62e42c
BLAKE2b-256 d20d429ecd6db0d300816731feb1c129f18a55b813c4863a2bd1974b46112f9e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ab00550e1c9a9d7e61d1d5eb61d772a39c12df1cce5b0d89d69f35c9011cca02
MD5 aac25a4c8ba137abf8037b7e9de83c80
BLAKE2b-256 81fc82082b8a1fd6f02cb348f72e74993ca4fd55fd89ee70c1826d774ef718bd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 67443c8dc93188dc44934b80b5089d6d11b4570a0e1807c01a793b0430ec55ce
MD5 6918d40f5b04f286c05a4d277f004da7
BLAKE2b-256 e2386a811db96c6acf29e6cfaeedcf39034c6bd6f1441aed50d53787b81feb4f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8e310234dbeb2d3e78de2ae8a3a4d588fff210a46c912bf6c95e537027e74c22
MD5 bdaf8ba87b32913d3ebcf17e5c5636ed
BLAKE2b-256 f6523e7ff6c385119716539490f3a15024a436aac07b6f25e3fac0fdb49a8ca7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7eaf2152b2af66396e7b523a5ebdda5f8892d5f0e155ba4a54388d3b1ccfc15a
MD5 bb46a9743ad2e3e150fab6280d32137d
BLAKE2b-256 328efc04e5f96dc8e42827486c1331279af3883b4fe31ffde4fff3a95bf6a111

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 115afd2727776bf164bb1279a5cfe6688266f45c2e05bbb970050f1f70a23fbf
MD5 e436603d2420bf14a6bb0290e5be94df
BLAKE2b-256 c8a5aaa3d32cf3e35fbab6cae44567771d5fe83f80b80858a79e4259b2a18331

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0e4fe1fdb83616ff6cb346d94c3077a6a8312e248fdaee1481dc912ca22dc4ab
MD5 f460cf5361e507bda9ece8a7f2c7b6a7
BLAKE2b-256 8a5cf75506bf6301710505b8a5f08303b3eaaf50ccfd1c95b294207313ef9205

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7e768465b55d12a8bf78df2da44c42164e4875c885ec5a8b6844d55ef67ef871
MD5 ce3948dd10254480dbaf47d2f94ecedd
BLAKE2b-256 3309030d5a77d870de833ee525b8085ae02ca2b05ceda63140af096fe594c1cd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 60c77d9863b6bf35988666ea7d7fb55fd5148ce940778acf991c73dda40cfd0a
MD5 a4aae5527b587faceee4090c97014df0
BLAKE2b-256 bfefdb2e13fa56f83b5d03c28b847274708679bc553b18de0a427d0ce7e4f102

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 04bfc52deb20fb484729780c71da1fae411ac8feab19a0c3cef7dfa9e71d8f92
MD5 c4d9a2d76099c414ed9cf0dcd963b386
BLAKE2b-256 5f9f928d6e59fad84f2a420db268303b95fbf93690a22f7371ddb7c7efa48f92

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d96447dc15a5ac55cdf13164f758c250b31736807e41995abf00bbe9924b944
MD5 c650bfc497721354b3d56878ca950da6
BLAKE2b-256 4eae06fa64bc40faa476320472ceb08d4c8890f717d40cf7bf5709403841811a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c762469c8a1deed950855fbf8749512069980f24b09d30d558b8ebc35d6f0fc5
MD5 02f6b7b3fff9713f36b436fa2565313b
BLAKE2b-256 941dfb321972f7b83c24ab93fe5fba8b4c23c21b0a21f92ee4183a5eba8a16e2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 cbd4b0c13b2948bf410d12b2450d1ff0fd1fd481147a05aec0145b07d691af96
MD5 e1db7162489195bfe63e6069c73fc20c
BLAKE2b-256 6edc1b71e0e8006b5dd7edbf64e814be81459a15a94f65f025bd8e2bbfffe99c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1cb05d74190edca58decc5ef2372aedf0df7dfc7b62e97830b5efa4a0d7d70da
MD5 ab0d2211c0ddde4bfaddda2ee05e6298
BLAKE2b-256 a3e134484c503d1edc1c9254bbdb66275762b1a38fe4948bfbc1d682921d2f53

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e10c6b463c44d189afca847086f36bd48b329723b064be0dc7b6baf974cbea79
MD5 50595a21297f99193f7c7ac3fbe0a38f
BLAKE2b-256 0853067e97583f8a92eac7e0701d938e0cb450239711b2233dde402a1aef58cd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ea213d82082bc2ae104cce2f441999c259b12559d46a0714794d73d3dd31d067
MD5 c23d95d721fde3abae5ece7e18ed8ac8
BLAKE2b-256 ac8c5e645664b40b3d9288291eaa4a82feaa61caf02d267d7598cc2bb07352c8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.1-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.1-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b61756a7a88817611b78e03c0cc10d33b73668ddf7cc596d5962eea77d5488ff
MD5 ba66fbf216b684b1c5d4d9e11b8eac04
BLAKE2b-256 d985b0990a19b734d7f92dead1fe80c85a8cff9cab6f119d5a87a9d2f550f0f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page