Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2024 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.9.10-pp39-pypy39_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.10-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.10-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

pedalboard-0.9.10-pp38-pypy38_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.10-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.10-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.10-pp37-pypy37_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.10-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.10-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.10-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pedalboard-0.9.10-cp312-cp312-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.9.10-cp312-cp312-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.9.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.10-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.9.10-cp312-cp312-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pedalboard-0.9.10-cp312-cp312-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.10-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.9.10-cp311-cp311-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pedalboard-0.9.10-cp311-cp311-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pedalboard-0.9.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.10-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.9.10-cp311-cp311-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.9.10-cp311-cp311-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.10-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.9.10-cp310-cp310-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.9.10-cp310-cp310-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.9.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.10-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.9.10-cp310-cp310-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.9.10-cp310-cp310-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.10-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.9.10-cp39-cp39-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pedalboard-0.9.10-cp39-cp39-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pedalboard-0.9.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.10-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.9.10-cp39-cp39-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.9.10-cp39-cp39-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.10-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.9.10-cp38-cp38-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pedalboard-0.9.10-cp38-cp38-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pedalboard-0.9.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.10-cp38-cp38-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.9.10-cp38-cp38-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.9.10-cp38-cp38-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.10-cp37-cp37m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.9.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.10-cp37-cp37m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.9.10-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.9.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.10-cp36-cp36m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.9.10-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a718fb820727e6724d7e9de84ca06b00afd6761e9dfb346d940fce5e99b1075a
MD5 72e67590ff40dfefa8fc1df22e60452d
BLAKE2b-256 cd08509274d1fccd86867652f558104610fabc08d4c7d0bf3de954d3eb8a6dec

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe57867ae56327ae8841fe97374c84030db33cf5e23d745139c1fb5af2f85bd0
MD5 f3035269b0184d3b1bdf30a312182c94
BLAKE2b-256 351ca73f2a3a76906cd482a10640aa72c6aa5ecd79c1dece4adc1e113150aed2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ce0ee89a7b266e3abac361c66f5cc884d07453ad0a43a1134384d6342de222be
MD5 326186fe49b2568f6fc9140127bd8fd6
BLAKE2b-256 80fb1376de109312eb26e6463c23f69672f7cdafe10e7d67024504d928f18096

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 349f7e5d87a5f45ca4ce31611a393123ab70b2e778d4642a3b37df045cd720af
MD5 53b8e20fe79c2f25742cebaacb77fa8e
BLAKE2b-256 66416e6f6d2e1d4449b23b8bf6c181d8f1c7128f8d3b4a5c615065546078677c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 fa0bd0ed49e6e78d2088e9e9053da0facdaa3d2d7f1fb1ff9824689a2d3b476d
MD5 be527ecd7c8afb226be1a17f230cb40f
BLAKE2b-256 79c787013f32673331515fd891af3b5714d2c714a051f4d412158187f3e35497

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4816a94ce9c452d5c1f6ba85ae44779d20afedd56305c7a02aa6e6c89864d470
MD5 75148c089321db2ed73f0a1d95b9893d
BLAKE2b-256 413e6dce834b7deeb8314d43465f3d3cbbcb251f32bcb19c1a8ed81bd99e04f2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a3313d4c85c80487130c14617f7f76445ed77b2fe84749f3c20bb72d63e2b951
MD5 41aadd813978eeb0c7f78e69e3f45f25
BLAKE2b-256 23f29ae58ec372cb105faac121fe60059027c09b179b202fc3c1cf38eed55684

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8f788f5579caf41ea222a1a8307d49d77d44e9a0eadf8461473d1af8a353305f
MD5 4dafb6613f2e13609f929c8b9cac2312
BLAKE2b-256 bf3b354cec09992e9099cacebeefc5e5deebde1d9dba232591b6ff7d455ca598

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4fa2a67a14e8b808e935428c70a68a61f9cd32ccd47b74f82be16ad3a5be420e
MD5 34f6b172b9ff36a8ead15f487dc24733
BLAKE2b-256 d5ecc7248548e1c69128f782df49dd17adaefc7e66798ac50df8a9255dbda8d0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66ceb87e25152a4044dbc741bd82252957f974811f83efac7bddb34e368d0667
MD5 05146dae9dea9e7a7fdd9d54804cd721
BLAKE2b-256 8419e289e77fe4f11e775f5523ae51e73b05e04dbfba9c00f5824c27bac5d1d1

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c88cded0ef03d09d0b7cfc37c56dedea8bdf259dfd0a96f778f0ec04df4bf7c4
MD5 4ef4d03bf03404643e7ca3141c1bcfb4
BLAKE2b-256 d1953de7d05894ea29edc449175542a7d2de5c5110b10274d1a41908baa889cb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 95bfdb6b55865ca40898772ca5c44aee5a74f08afd5c2d29e3bedafa8c6b8ad5
MD5 11b30b282491323199c7fc75c31de30c
BLAKE2b-256 e24ae339ee47a15751704306b37af5669ea84cd0e8844aabdcfcb7041a53c829

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 635d3f524c9fda968d5eb11645799850e730df0044b1dde163d9dcbb5b91be32
MD5 028fd1640954fe51c1573867eed4a1e3
BLAKE2b-256 b468777ae6ab99e5f9cc49c4acc5b40b1ca022bf4863813bccd56447f9c4547a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b0cc6bce2a772d8455d734bf892de31278a7a60cb9ea3fd5b2561240041c1795
MD5 c70c7650e74cd5c28c7f2f7a5850aa17
BLAKE2b-256 2abcf40366e2229db24d723d078e8a2890f47b7d492e75f6cecab0d05edf03fb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 659c3981c0f040f44037d6a6be42f9d76ca9a552b54d85ae06b8b4c2ea4fd576
MD5 e641b20e0b9aabc71a696c0e0b84c79b
BLAKE2b-256 14d053f96b05f285c4d3eea506b238ff1ee11ca7b0c01487cb2c0048431e3c90

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0824cad6cc368f2f1f9a555852495edc0b1589bcd8b07e255a6c3161798577de
MD5 83cac90892edcabf45f2e506fe04fef7
BLAKE2b-256 8e27e210f0c02b412ebfa1aae26a077225b0f97a0e0fc31ccc3a6398925249d5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b0a92eff89bad22f9cc86499609311fcf791e062775fffbd0cb06b2913f6e55b
MD5 b634fe6cb4c9f3e70bf3b517c38d72dc
BLAKE2b-256 98efc720ae6903d8058afef8e4f91ec4a762ed85931d489e9245402c230c9bbf

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1668e63efb888a02be3d6d75c5daea950464dfef91b2c7126c1c89bb06ca4b14
MD5 3b4b854fb2dffb1b9c3c4103c6b0859d
BLAKE2b-256 007ce5ab64cb3a54b5a6af1372d07a2a1621e5271f3decfe328b5673a8171c69

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ae307e3257b06aee74305d281ef2b55c4b58a1c0784fba4e37e52bcfb050af74
MD5 d8ffbfa6f76ef17b87d8e372592722ca
BLAKE2b-256 e74034091ac3ff37f79be1360587ef34ca82f354953842dd694de16f56f1336a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 319b92d973512bfaeae3a7410a2e0d0e380ac09b57b62511f3f1be206f9863af
MD5 31768c98c1f53a96212541d3daaddf1e
BLAKE2b-256 9c2406065d3a4bbbe4fcfe3c7c4ae9d119a551b263b6951a7c4ab38f34b311d4

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5c42e6f93d67fbacbaa47041185ce92478aa3571bc9300c06fe00c0d96c9d03b
MD5 8dea4bc2cce3d7de634467a7fb8faad7
BLAKE2b-256 b05be9f3e01e42a73a8f7ad060691ad2f64d481d367d91b8983d2d22d51aaa25

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e4353424892a6c4e137f257c6e820db58db1bc1d52944ea6277bb4f4e5b89e77
MD5 47d7cca41f49da40f93710f73f14638c
BLAKE2b-256 5118b0d74fcbc2f90b8276ad8591ad35dc0740ce69f86724100af21621dc85dc

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f8aabcc61aec8f2810a96c2b49fa718dbf34c5d5399230ec72148f17abe27e63
MD5 81d5d9d5779690c8e7eabf2f0eae885a
BLAKE2b-256 fe047f913dc88966dc09158a28227a94b9247de4592789ec8f5804ef0e72855a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7cd16dee8352a4e1d3d6fd8b2c843d60bc936ec5de27cded448bac9be4282998
MD5 d86fa21b756cb4431c278417652220f7
BLAKE2b-256 84eb2b67a06c5211ba0d98eb537acf69cd6fcbb8f88186098f82ed05f4cd1838

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9780c097d459c589156a1e69c7dc337285eb185e832755f58f0955fa9af37486
MD5 59fdea00ed1cd0f906547b1979eb1081
BLAKE2b-256 c572031d831753f310b7457f344482c633ab2a5b5e9342ab78cd0ad5126fe61e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a6a65f76b133a5bee3c102b7139b15cd5873185fd1b390d76649579ddd4ec405
MD5 44b46e0402497e6e5ecb05352587499b
BLAKE2b-256 828b0052da904374934f2203be227d37aac0de2fac73a44d3cd857cf11b2ab1a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9fb118790486e121f981909819b3e7c8ad6a3cb41a8470a3bbb4f027c712dce9
MD5 49008419a0f2fbe9f3386c3bc91c6cf8
BLAKE2b-256 bfc8c97edbc74ea4f48985729c4d5ab79d238614a807d0cf6b9ee6cf57d26eb7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 a7bf90e0833e07298c4b0211907498671e7274929b33bd2bfb8fbbd114eba04f
MD5 ada764043cf1cd4df5d7ccea3df10266
BLAKE2b-256 fa397d351216858eef42495b2cabb14a4c87497bc3b4f02c71bfa6ee094b13b8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 744c1993d390efc51c7f377ed9bb990f27a9b9b86a65621f6529daa8f623a31f
MD5 96da44741d97f988b27ef9cb0c4170f1
BLAKE2b-256 36c2f68d37d5f5e3982169cc2535670ad34968aaa6bbd17511e65da88f2f62ef

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c4f7cd0270b81b0579578e8230ed48509db94464f2916796e09a968dddcecde5
MD5 032afe5e776ac4f7850160db9f386700
BLAKE2b-256 1847f81f0f49d6820b4517263dc99439377801b1a0579ad4f7040152557bac1b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7239dd5fbd3bb72df8854398016c0d6ea5f004fef50584025f23d762abc430dd
MD5 22dbbe79b5c3511cc00a07272d6bfbd6
BLAKE2b-256 8d8935363957a6cd0e225c4173fe94ef6b4b8efe88a23dbfaa482f64696f0e18

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7934d0c111a77bffa9e74f90aef0e1eb348dd7d34ea2b742cd81ecbdcde16983
MD5 a2ac0dd1bdabfec7a99bde67fced2219
BLAKE2b-256 5a2b963eccffd7d6eb6b4438e338d23a75a1786bc7f01b7bbc6b1c0bc2e765ad

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f2e919d3ca4107a7d04ad8c2e6bd279743d48953f53209c96bf192b42dd57332
MD5 12aeacaa1a0e8fc11265c5a1cca8fa15
BLAKE2b-256 7e2b07ca00c16f5422cb53363d8970bc617e4c2645411e097ec566ac3bfafc05

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 52411d196007b0a2fbbad9baff03fba5b43a80b6d7ed7ab431d17e476df666b8
MD5 08f3ca09773eadb9df0ba514e6160e43
BLAKE2b-256 3e2f3b03f75ed3962cfa1d86c75ae8eb30ffdbccccce9dddc0ded2eb1972df16

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8b9dfd6bedbd7574b2943e2b9f78763754e3c1be87880ee4112a97b64d66d555
MD5 88181ebb031d8b3f1e53c7a5d2e71c39
BLAKE2b-256 294f63b120edcce2db4ebaf46a11c2c3ded44e57d96ef7c9f1964790fde080b6

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 c84a774c3dc136308a00e9ea4224f7f02138e0ec1d6002d232df02351426137d
MD5 ae442b7603d03cd6e391b69c92fc2d5f
BLAKE2b-256 96b1e0b76c4cb12ea560171337fcba8c8ebab6b632108fbed2a06701a352b786

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3160e0bef4ff55bedf2e842f84c6b79cba00b1459ec4361f3bc195f9959553fd
MD5 b1a18f406bf14e69591911d78895daa8
BLAKE2b-256 6b0316cdfbf0f889105806a299cb977a20c7b7d81befd6b863359074bb9cb705

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9a5c07b24ddbaec238dcb1374a816788210f495f355c6299dd9216e422fbf6cb
MD5 21fc62e9b590da0acf9a8858275053cf
BLAKE2b-256 7ea41d3587b6af9beb4b08608fe0ca04e70c322778e9f2aef02296337d93009a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ccd7d527aea11dfb0aa4c89df9ced3ed1779d2f007769afe4977fefbc1934b91
MD5 2a17eb794b4adee657e6d70a0fa21deb
BLAKE2b-256 7dea6fedcd0780b61a84b8ba8f71453a36f0e461012280e8e7d292e87f5503e4

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17672a52e4d7ecedc1dbbbd07245959c10118b0100a1b3e38d012c7b0f074bb2
MD5 ebee12e23dcf189bc0e1ef223d56a86f
BLAKE2b-256 f640d2d16bf32461b3a5f8b8c6219eaf4fbd8b08901b432627a4a7739cd32987

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ee2995d4ed76da6c9c11abb10a0c5cdd94b8b450586e1cb9aea756a94c768596
MD5 ee401a06558d4e949acf6f639b6bacbd
BLAKE2b-256 07e91456ff8f195146ee0fe6abe3fcc7717e28887b74af5647f4e84c6378ccee

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1bb265698cfbe299e3770b5a1909a6603799593efb928fa37f39634ddd7a78f8
MD5 ac8b20e371be44439cd7690a8323ee73
BLAKE2b-256 bbe6808ef37c7567cffabff4c24fa5db9845f0c145c6db5cc960e2deb70c47a3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 dcedd1754143d1502197f2e7d207f3b97129b8986962b4fa0702cdcf3aa5007f
MD5 d3c0889bea797a0fb4d4c82ed1b08f94
BLAKE2b-256 4ed2547987c85391aca5732c51f0ca5d7317beff2b99fa78c0023b2e20314f5d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 26ea2e6e6be083ba3e60539bdc8a381bbce64cf797176ccfcfe6030a8670c24a
MD5 1b803f0baa9921c306adc0f8e12b4afb
BLAKE2b-256 cfffb7afed045533927140b15a54f845ecdecbc78772fd5f34e5b6f2d644a6f0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e85d49c39d59ceb65e3cd041238b872305e4adbdaf5b3bfa9487fadd4d41c1eb
MD5 6ef208d34b6d8062d039b5f620074403
BLAKE2b-256 c985f12865e62016cfa6a1846b71942cc225b854c0c14676e9202308b9f05936

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 90aa65903769282398e666dc7595c0609c3f84758ec4616aba36013378861f8b
MD5 eb7bda3f40d044a361670616d79b0204
BLAKE2b-256 c605912a60a1a1b717560d503d1cc9c8f9055536c5def9281ba5f20f8753647b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d1120abe705ac12c5de1407dde4bb06e505f625aa02ac7aebfc595c541fc195c
MD5 8c3b6d29cf95f02ffb7ff8e1944dce4c
BLAKE2b-256 d5827c3f6d6d818e94c747ff9780152e153851e67dae4123758d586472167fc0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1822b47ff885cea6264c65e92d125a96c8c715de79db6ddf2fa30e487437e63d
MD5 2f08c5e53084c5638f0af518761acfd9
BLAKE2b-256 805ba13a9ef4ede06f333771f18aff9ef41b6e07ba03346905ea249e87b30b64

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8548703b02c506e2537d4793b137dc32eeeb5798241556be8939b49fe8a2a813
MD5 3a1486c35db4a6d6a43522f96d16121a
BLAKE2b-256 8e82ebddb95771d64556d7bade053df12f4139a101ba9f92dca05fb8c168f524

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c58f267ba9f9df347f9beaf80b7fd0944f22162854984d18be1f1b733e106a1f
MD5 d09ee9d082f1612a87056951954c20ae
BLAKE2b-256 7f53dc2f823005079c49817d28061d34ceb6fe53e20bb9b7df97c692b5363503

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3dd138e9fd34764299d8cedd5a81a82eafd1572d119212f2ee2ea997c535d41c
MD5 01bb8476a413659f143e257a383850da
BLAKE2b-256 e777033993f19d6ae3b3620420644077751de8b350743a5d92e9e5a1a70d02d8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 d3e063db009b125a6e9db47857a546e33bb34fda27a340bae6e68a93d2dd8d82
MD5 4c27d9c115c24eefebaa9233da792b6d
BLAKE2b-256 b6c2eeefc8679a62196512dbe2d406fe60000a2c7d2eec8ef3dc6e2058296ba8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 60598d87a7cfd6bea14a1d3fe7d1a5179192d16ca4a4fc1d89600a019fce6a6d
MD5 86f2b32d1a53fd4ba81e1fea58e75001
BLAKE2b-256 7bcb914f82933d941cbbd6436bf591d9283e9a77ac23d271ba2c8d8b9c809570

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f3049a53dcfd7e02d209b2f36434a53559d9b8c8af8ae29c63293725d1a22776
MD5 2a441b337304fa9a979e731b5d58f9c3
BLAKE2b-256 ff160df5907e3a123d91189fa686b67803cf9daa2f56c3ae131e7e204f1d6aed

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fe3fd8185161a778043a94214480e9829981306ab0875193d5d0ff8d8da86f37
MD5 6d1489f63c99c4d42e16d926148b1915
BLAKE2b-256 89b7e236498568ad7ff1821352fbd498dbbda94d4e7e1f783a99bd7d4696ac1c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f6fcaf5b697526894b5d27b867d5451fac5e3930fce7949846a58c2eb49f5d87
MD5 9bbdc7fb81d06041cdfd8462757346d6
BLAKE2b-256 1b555477a943bb0cb757ef9a824fa3ebe60bc15e155f533f3e377e8853c51afd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1a80d419ba49d1943da916d32405f069470301b1d7a25a2f8d5e67acd2ffeb89
MD5 c211f2b6f001a83810ee9f100a2936e1
BLAKE2b-256 f67223b9ed32b8f82b6f08b5f88adee6200ff21bc2308c1430c508950e9add28

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 91521b763ac18300574e2be3a3147ae6682536dcb45c4724665ac3da402665c3
MD5 666f09aea42b15f1f2f634cf8cba9294
BLAKE2b-256 96edd6cb669000d68dfceeb54200ee777129912b811b5c718947776022395f1c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e7e72bd734407d441dbd2d5496aaae4a6c31992b04b063a0d13c600c7294b43a
MD5 88e47869307778727a1bd053cb3ddd1c
BLAKE2b-256 9b1e9911dcbd311ba0afa982a94fc93f6fc86a244a4e144b7ec90db3cbe20bb8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.10-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.10-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1b6dddd5c1ad6c9c14535572613ca03b63055002d1224ce5044e17a53a74b7ef
MD5 111b976ce9c7d3d1271307d4979b1b3b
BLAKE2b-256 18a0d698553962468c3ebd84e0d346a4ed545a8e701c7c69ca31dab3bf416303

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page