Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2024 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.9.12-pp39-pypy39_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.12-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.12-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.12-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

pedalboard-0.9.12-pp38-pypy38_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.12-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.12-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.12-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.12-pp37-pypy37_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.12-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.12-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.12-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.12-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pedalboard-0.9.12-cp312-cp312-win32.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86

pedalboard-0.9.12-cp312-cp312-musllinux_1_1_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.9.12-cp312-cp312-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.9.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.12-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.12-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.9.12-cp312-cp312-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pedalboard-0.9.12-cp312-cp312-macosx_10_13_universal2.whl (5.4 MB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.12-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.9.12-cp311-cp311-win32.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86

pedalboard-0.9.12-cp311-cp311-musllinux_1_1_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pedalboard-0.9.12-cp311-cp311-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pedalboard-0.9.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.12-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.9.12-cp311-cp311-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.9.12-cp311-cp311-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.12-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.9.12-cp310-cp310-win32.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86

pedalboard-0.9.12-cp310-cp310-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.9.12-cp310-cp310-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.9.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.12-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.9.12-cp310-cp310-macosx_10_14_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pedalboard-0.9.12-cp310-cp310-macosx_10_14_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.14+ universal2 (ARM64, x86-64)

pedalboard-0.9.12-cp310-cp310-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.9.12-cp310-cp310-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.12-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.9.12-cp39-cp39-win32.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86

pedalboard-0.9.12-cp39-cp39-musllinux_1_1_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pedalboard-0.9.12-cp39-cp39-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pedalboard-0.9.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.12-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.9.12-cp39-cp39-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.9.12-cp39-cp39-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.12-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.9.12-cp38-cp38-win32.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86

pedalboard-0.9.12-cp38-cp38-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pedalboard-0.9.12-cp38-cp38-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pedalboard-0.9.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.12-cp38-cp38-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.9.12-cp38-cp38-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.9.12-cp38-cp38-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.12-cp37-cp37m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.9.12-cp37-cp37m-win32.whl (2.6 MB view details)

Uploaded CPython 3.7m Windows x86

pedalboard-0.9.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.12-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.12-cp37-cp37m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.9.12-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.9.12-cp36-cp36m-win32.whl (2.8 MB view details)

Uploaded CPython 3.6m Windows x86

pedalboard-0.9.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.12-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.12-cp36-cp36m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.9.12-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4b2b540c6fe6221183023fe64e156e33574b0f870adfa12d1768cc1b48b84f51
MD5 a4c743dafc185b096cfecb291171beb2
BLAKE2b-256 41b114883b6de0c66cb0ed3007f6c96d2fe27ab410274eb6add18775f37da51c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc22a8cc38f33e94d3392c7a4e080836eff43489e495571dbf67b19497fe312f
MD5 59c38651dce2a910a3e3c1c74ce5f31d
BLAKE2b-256 54a3305bfeb0fde41cebf8a44ac7b6252bad9fa9de6258147cd6edb399f03e64

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 517d80a6ceba5cdd2c562aaf463543ebd16d20bf96635d8ce25224b3112caa6b
MD5 3e43cd7b92d04095adb64667a659b8a6
BLAKE2b-256 30a383a3390d2a90090b100bff74c1d0c62d2f2bd3c630188f2a0252d7d6453e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 49cc49b0e8c7480d249103f9c62804ff0e4406ad53e5a26cd83a5bd1a60b0fe9
MD5 9060b551208a925082e96bc9d99031e0
BLAKE2b-256 a3ab103721e6d954fb736232fb418f87f5014abda8f27803ed169fb86447fecf

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 53fd70f3ba2a59dbc3156e56779a2655f89af822083311f4c53ad451cdea7836
MD5 01356e0b34c744620bc614d3bd4406bb
BLAKE2b-256 10422c9c976b9d0112df58e2fff7a5784bfe072061803c0559c7e0d6dd263600

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20f43b73c1d4bc41d73b74693dd405bb0f94b69829b52d103da6decaa884821e
MD5 ae3657284d412e46c76b6a2be1fe3988
BLAKE2b-256 17b1bf8f5aa741b703597555c4eccb5093936bfcfb1be22e95b392ca1778f194

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5d95b034c42e2b0442ff127a8d2ebf8635c3391d5999404333e04e6bc37065ce
MD5 8b3ee54f88663890be5dc79d2556da6b
BLAKE2b-256 d1872a1f29995df83ed579bb353826c81d06f1eccd69bd9b7c2d1800454822d3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 76f66cb967971ed1ace5addc266ccc1dbb238b3f9ac2a874e8f9f2ae53300edc
MD5 ebe961cbbdc84ef4703bbdbfe2551fba
BLAKE2b-256 7d9a2dd77656f7280b0c321214aca5b3f715bb93e95e8429df72092e862dfe22

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 bf3538c45a57f432ce70401f42af8318a5e1ab3da86be3ee651bed767018b1d7
MD5 16744386c8b3c19515ddb5f386a2596b
BLAKE2b-256 df37e27cbf9d820aef65c54a1f93a727635d7d944ace2bbf92c6441c593260ed

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8cce623299735521ffcd62f4a5a99224929a96b256bbced8052fda6b148465a2
MD5 9db04f3b1ff352fb3279e6a8a8d78162
BLAKE2b-256 85dc9d0da165bb5cbaf04e7b661917789654aa803bbe80aeba80f2e4acce59e9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1d74dd0801998daa242990e39d7aab235d52646945d7efdf9e22798060642c18
MD5 8bf327da16633dc1530b2846d0c68041
BLAKE2b-256 7602a6613eb659edf20ed6a7310b30a131adc2c9a7fa86c98a110264c878d4f8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c99eafc8fe3353aad8b62bc2e40fa2c3a35beafd9277dde766bc9f810dc5c97e
MD5 1c56183f9e89f168ead68fc007ee01ce
BLAKE2b-256 a88a31b97019786ce8aa0fa60243e2d13112b351bc74d1d5aba490fd93f3dc9b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 09eff81333ceff0a7b01f460fb65942febb8e4e52470c0db40375e1b5a661e3a
MD5 c18032175d6e4fac2f09de2e2bfe175a
BLAKE2b-256 7d9ca3859fa1cb0ecde5c45eaef7392ad09b0af6a709529074aedd3007b5c52d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp312-cp312-win32.whl.

File metadata

  • Download URL: pedalboard-0.9.12-cp312-cp312-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pedalboard-0.9.12-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 4acead8106d9d1aca67c300f041107ed235522135c8f0c73663746cdca56ae53
MD5 d992f1df0c542b18a6633fd6bbae3904
BLAKE2b-256 84658ab8bf911c31e84a9be3423c8b56c5f6ffa4037123ce2c3cadf0e57dc6f7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d2d1ce2bfeb486cee25075de86b7d434bdbff988374dc0ae2e1754eb165b7cc2
MD5 ca20c8708a40d339f282c83e44f76e26
BLAKE2b-256 dbcc6a65c3541ad9277c5a30e757feeda9205515491e0a2754805736e69b124b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 74688c69956de843c228695dcfbe343d0382472542e925b5554dde2df9ffaf47
MD5 988075ae7cb29a94a9e401a2a34ffe49
BLAKE2b-256 6a0b581962490c1f277a4c9bedc6774c1ce373efd030be7c53981c9e31c533ba

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d07026e4d5266ada039eb1582f735621d1722b477757a6178166332b960cde40
MD5 06606c31de89df93942655957046e293
BLAKE2b-256 015268ea841012918ab7958b60cf2ea1b6cd3da6cde880b8f44f02908d318b08

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3edec4f96092ed97d0959eb759e2062624dc28317a7a730af8e5de2db628c4b2
MD5 7bfc43c65f47e00d704b1277b20f0277
BLAKE2b-256 49418c88caffeeec8c632e049616af670564d5923b601d37203892bc12d06125

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 433895bf6fcbcdd5955073caa7794c8092a17ef8fc11e3b6d0ccd296bb58659f
MD5 617993cf9b9344066ee02b797a8562d4
BLAKE2b-256 c897d4bb0685627b411558c724c1796fbc22f6e4e7e00e5f6696f4a2d551e4cd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5341d173c1dde131e0a6c2e18e63ee62a8d498f994d24894352d88a76369c077
MD5 690ae9da5e0b3a42da2311512bdbfd63
BLAKE2b-256 7edb97dc0ea477804b3143768a156fd42c7802c0dc39c54f99ea3bde281943cd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 ca302c124cb8aff6d389b007f9b0f4f0a416f381955ee3d6548246ec48c9aeec
MD5 1ad24cb606f2cfbc7daeda6bfc1519e8
BLAKE2b-256 7d7c745880d0b378f608eb88d807544ab0f8fa056b76caa2b5a48dbfb7868f48

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d543b11ab49724430fa221cc600f3c99c0fb0f6933afa16d3bb1e4a5593313f0
MD5 737ac8bc44c73296dcbe06add889b053
BLAKE2b-256 3b63ff85f07a64a24b643c94f8936f68e18e163b97ab8c48de2044aaba38b689

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp311-cp311-win32.whl.

File metadata

  • Download URL: pedalboard-0.9.12-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pedalboard-0.9.12-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 20ba353052dea753bc8785741c395cebb644c6efc8d36473e591437e9075ca5f
MD5 6e5d80a19f0ad8ba3e3ea7f98f433150
BLAKE2b-256 f828e9230b6a1d275b67436902f272b1cc1e5160cfdb9b9fa855d2afc73b4d83

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 056e2c44648bc325681c18efd82a1099bcfec35be5535178e5b0028461f0493e
MD5 38e671afc041cf1456a7e952a88d2653
BLAKE2b-256 b9975f7d23de0f7de61eaf6695d00045cab7be7613db116fee4ac68b4271b044

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 72c6f60cf134d00e92ce182cc2c40176a9816c1b4c56e9a99fc94a01ec3013b7
MD5 ca38443e577be9e61d7ffbddc7dd93f5
BLAKE2b-256 85605b01475cf89bd15262296967de92ad8d5c428c1503544df49f9c3201ba6c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2938bf874e27ba3affd4c8b65ff1c85566974725f90d927dd91c81d706b39e85
MD5 02c35adace580abfafe8f5466bddec8c
BLAKE2b-256 387cb8e95af192c6f6d04dc2d8604530cc21e60f085ee5167f200d31c3c2775e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f06353bf765fc20a8aed2c0e32184a75c4ddc79fba8820edee7b7ad091a97e4e
MD5 f4666033fba7985bdb3680bafff6d9ed
BLAKE2b-256 02392a8b3604632a697c12ecb1f40315ca20880c916a89cade5ec2a68222e592

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a9f139fc6e29b52869f1be566ff70006bd17dee8a550b58ff0c4a8023151d953
MD5 a36ed0b0435f318f81ef3a5802acdcf0
BLAKE2b-256 4a58e6dd0913d00ed5047d2e6c27142976b9530bf8eceda1b0b5920f24886d06

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 992d076b59ef688ea7d81f9a66c7240558df801c141842ffc693cd6d5b176d67
MD5 983aa921c9d2e92adf0f2e9c244d50a9
BLAKE2b-256 222033578db1cbc75b40b05a53da64f8cbc6fcff9552f5a2e3ceac9f82302ffa

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 355af020b43078535af501826a2ba260c522cf8503be5dcc379457d25590e7ba
MD5 78a830d8ab9a5f7b66cbf232c7f591d4
BLAKE2b-256 f87917a414251801d4a95ad75d50ac1bc96014f9e954c42ebde7050716b45dc0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9abd27362e56dadaf438f87a868d653b37e6c638ba2fadb96a78807fa5e26f1f
MD5 3dffca40d7e55c65e4d2c29d5dea25d6
BLAKE2b-256 d4b003c4778f48d31462f15280294d90c4b86f061f7a869cd7dd6b72c6abf8f2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp310-cp310-win32.whl.

File metadata

  • Download URL: pedalboard-0.9.12-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pedalboard-0.9.12-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b53cf23568957f442a35b45e3c207b5602f22215bdb497c604d483d3acda7d4c
MD5 85f59a5677160d9048e4da1049caa60e
BLAKE2b-256 0511ea5d0bcbd2f01d2167bd31068ae6c674a3faa9a34c8427f8aa67d72715b1

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9e0e396845d4fc48b1a4b51e0e7fec9a60ca4e7584c45f31b0f0b2420a5b5055
MD5 7b5f88afb9fe1a4f079d4cfb8f4f6b94
BLAKE2b-256 8c4c7bee3ccceba4a72397cbe0feba30b98e5bdd993efda0dbbfd2258df34e19

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7dd3e1db58d54142078ab554882c821a21ba588c2b9022dc5dfe5bd30c29254a
MD5 314a0a5f93b65557bedcd35448f22269
BLAKE2b-256 ea1a5c3aa4e5892d18d4758ba6035a7f1f368b6003d48f521a355c630ea80660

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f4ef7558a6f495614431df4753845db4837e3a8a281ee63de12051a4dea48a4
MD5 4e6577471c25c89c1378b98b5be3a64f
BLAKE2b-256 f3fdb8b706e9edce2b26623fe89348d6b422743be48356121fee435d4e29b1ce

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b7d821b85957a3669a6db7ce02ba7f9cf1d8ff6811105954d7fd13c8a9662deb
MD5 9c94eb9d6dc9ae6e848ce882988ee3e5
BLAKE2b-256 f0ee1e1403596de759fd2d7147122b84b00e5112c8eeec7894e094a4d2166cbe

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0da25ea50ce466aa7203be76d7d2784d78e8636cd27e3161581a40e164533593
MD5 9857659feb047d0dad30ccb57c6fbd45
BLAKE2b-256 0a5ba90c8d0ca3cee8ec69dfc4feb68dfbaf0a20a357a6d7bc28900da5a86864

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3b3b88c180b8f97a262a678a0b3e67f51653bf3511dc8a9a4006b9bcbc7c6f38
MD5 d87e5eb83aa7903fc5b1cb31441b8b90
BLAKE2b-256 3943ade2b533813529629a9ff4fb890604056833d188488467c9c9f97bbfecf3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp310-cp310-macosx_10_14_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp310-cp310-macosx_10_14_universal2.whl
Algorithm Hash digest
SHA256 4968226d78b4829cb44d89fff926b458b6fbaeb6ca3cc1c35441a8998dc3d108
MD5 17525e26234d25a2ee665c78d865266d
BLAKE2b-256 b42c856146df4ac1fc14372a2f95a764f505878ed016470ce9d655d1e55389bb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 92183a2302bfee4a16b0c2e7a4c53b61356da058efd73c24d30852a9b8bfe479
MD5 17bbe91ecaadb655a85613d1be0a0c0c
BLAKE2b-256 5da6a3b4a347e6c20a8575b7030c21104c989a128b1fead6f3fb33ab16a491bb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 9bdcf406a23b5732929151515c964a8df0a132d4dc28e0c7af4caadc1687e4a9
MD5 9c5d6c5090311fb6ace17c2610077a58
BLAKE2b-256 5bfbbcd26346eab451d710ec0c9919d0e95c72b0b5b643d710d9aa76118afe98

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0d6073e9b9305d5f8d0c16458bef0bfe1be0b9bdcfe705302c5b4ca1c1779005
MD5 3f7203e79c41ed08d191137343dbc098
BLAKE2b-256 b18820ae6f0ab6382845581b48c676fd46725c8c4f6d17f4715ff8fc897070ef

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp39-cp39-win32.whl.

File metadata

  • Download URL: pedalboard-0.9.12-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pedalboard-0.9.12-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0ed732094704102ea632a07c35e8d159948910918cd65852979b8f52b8a98f84
MD5 0ca21de54a329eda315ef6585aa08e0e
BLAKE2b-256 056f6db2a5c7ffd4c73d10aa6d2f2fabbecd958af8269ab614bf76eaf6a6f6f5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1bc2884f18338189ada8fc17a0941823bc5a5e50e3f32f8cfad61aa3cfcc5b05
MD5 538fe2470f02509c9fc9d482696ea955
BLAKE2b-256 de65d2b55ee54e416e983d295c8898cbfaecfa1ccaaf214b11091398b9c43010

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 02a35cca84daf07735f264bea913707b289e75179a25383c553fceb7d689db2b
MD5 dfecc08b15b2bc04470cebeebe4c6787
BLAKE2b-256 a26d77cc6ce8e5dfd56bca60036f100d78d22d30939eb4d818f4110d8e9c6ec0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa0268f9b0663ef0dd7ac0b207bcaaedfa6cac6aa1ca1ecd2bda8b56050096f8
MD5 47bd3f58a1122b535f5f1165b6d48257
BLAKE2b-256 d21c2bf05a7f758a180a8c40dca3d67c6b77b2473782ee929920e992334b202d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1d8f548a5a8f7300c1703ba99a7ea433ce39b4c9b4ba5d7c3eb559440edcace1
MD5 286a7236878647de7117c820adb527d5
BLAKE2b-256 ca360cd5f8fe44f3a647d2cf3ea887a100879d423549805cc71021f06df8599d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dd8fe4b338c81e690ee36c187b82421dc94ffaac0bb73e61a765bb16f60e3ca4
MD5 0b02c09a7158485462d654f7b44a2bc0
BLAKE2b-256 067092a37d6651d456bc32c6bb400fd27786efd9a49d314be2572ef630aa52ee

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1dd9d276aed1e7e6f696bdd6de7874a6a902a464cf99adda7bb3340b5c0e5b35
MD5 e0e78fb6f6483c9446b0aaed90a81cab
BLAKE2b-256 b2e8dc73673815773e761c4686bb8fdccce91bf66f8482614f72caa212d111b9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 0cb57fc121ceee97416a041be3e1fcad7eacb21059e9e9a96e561cea78b3cce0
MD5 16545b022421f6142bbcd1702946efa9
BLAKE2b-256 d61ae815e95713f93af0a9c4a2507d1f766d6b38ab07d899669d4bfce4339fac

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 10f8ae413356d56b54bc9ce268b34c5e0bc06a22f1982a7d371d601accf39713
MD5 07b2dd2f8ed8104e4e2e0bac07d18a21
BLAKE2b-256 5af06feb0b86707acee5cde27de8974734f413bb4ba8c6d6220b3003042938ad

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp38-cp38-win32.whl.

File metadata

  • Download URL: pedalboard-0.9.12-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pedalboard-0.9.12-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a2485209cbb6afc2bf7ee8b62094fe5a597ac3f1beb808cd45234b7fea80b690
MD5 1536d78cfad2405a282d7cd35d793193
BLAKE2b-256 768426de0b980cb7078ccd112c09c3268f1e9c517e54f13af6440d7e22f9e1c2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ac4789a5c9001c7f4164d0c808f3c3f2315905d0029e321d726165d9c633ab36
MD5 44943138d67dd7957439febd1b045305
BLAKE2b-256 2188505aeb0cc0be0f730e387e2ad401e492a3965f8212a16362a4ac865ba160

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7525c064a7ff237a72c5671f627c84e4e410b050cc49558fe9e0e18f9f78044d
MD5 b9e10fc074c567cd0a8eb948d7718851
BLAKE2b-256 645f9c35d45bee876b2598130e2da0e1d4eb85e81cd9b6669f2bd8c7dd3bead5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e9953d797c6db0488a5ecfa5fe7d8eee5c4c499e00b469dea9df760add626da
MD5 64fd0769f41d553a567046b1763e815a
BLAKE2b-256 2c9404b016d087e07d93019c98416a159ed40bb7afed1abaa79211681151cc00

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f5bc7da49cfe17aa00b396ad7fda11a9ef3da58487691a8e5e2a8434d74c0ef3
MD5 e68f7a99f9428e6e609630f092c384f2
BLAKE2b-256 0ebf198cc37d3405f1918979afdc6a8adb19da18d50dbb86425f2b66cae85430

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 df3fede60833beb128ae8969427d6bc26e70ff582038345c9d8e80d9bedbb706
MD5 a1f51a0b77116f0be268141f2bbfd597
BLAKE2b-256 36c33a6096d292c979111d6bcfe7190845d1a72717c8e227d30369b992a8738c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6b1048701c62ec8b3731720245780fd2e9fe79f4f36afdf69ac54c0d248ae0e9
MD5 0e3d5ea5f139216a8566dd184c890f35
BLAKE2b-256 89af14dd51e8ce9abe172a6582f64dc1d77595a5be9959212fd4bfe06130428f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 aa02a9cf599d0f2e66980686b17cf5bca0b4409ce82e41ac66aa47f03cedb6a0
MD5 3420f0f644d342e3ecfb964e6ec15d02
BLAKE2b-256 ef8dedf841fa60d43bc08eb13bfdceb9a8655256047712520df733edb96e8654

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d44b06f5e1fd13b3816a6dd766ab40075e04c94757ec803eeb66e7518454f3d7
MD5 668810e903078ce90af4d9c5eee5bb29
BLAKE2b-256 f3ed5d3ef9544ca870230272495148730aeb404cde0a9855e97cc191d4d6eac3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pedalboard-0.9.12-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pedalboard-0.9.12-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 a572c5fdcf8f9a832336502796b64388448eb1d70258121bce9948799d9c01e5
MD5 162a68a89ad4a0180016b224c32333d3
BLAKE2b-256 c7b39947234910ab3fa487e415260f6d9344ba7e4361d876183b0cdba858cfbb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85255b2c484f12e01c69ea325d6a385cb3bf963efb5789e8f4f6a51049f4f72e
MD5 1b1912e3db46ff03215556114d811c5c
BLAKE2b-256 faada490b93e773240d45e21c28b9e29b9d7a75b7f0e43b1d2c8c9290855466d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f6322a7c60ad176d28df67802956e9e1920eaef787883658b6148454daa5757b
MD5 00c579ebb045c84cf4284a8a784145ec
BLAKE2b-256 94a44c0795a220f3fa603cf5fb94dcd520b9a4debacf1aa246a5643a6dbc2064

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8a101057bfaf47984d45efb06e348e865163d00807f14b44a028a1970162146d
MD5 6b34b1e1dd40a8e440ff0d3bbca328c4
BLAKE2b-256 221ab76812a69a7a5281ec35137191d9a0b9df4ecfac03e2e2db04914c17f67e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f318a09f52f5af198419ab02001c37c1efc45e154470d4f8754db8e4f73a5334
MD5 31a19c973bf48ea65748d4a974d93309
BLAKE2b-256 5cad0e1e18e192ac2c4b4e0f6bea0379c412b4817080b3f679908a95c2ef2f72

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pedalboard-0.9.12-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pedalboard-0.9.12-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 c6ff299ae0e381ede6c0b1afb0dc85ed5639984b317952fe59ac7092720d77c8
MD5 f6c3a2eab52877f96518322d41c4d591
BLAKE2b-256 14575744716ff162eb9fce68a71d39259923ca2015270ebfd432fc9079ffc29f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bde98dad21779d391f072eab659eccedc3436531685bcf9ea745d1db8cb00dec
MD5 cb2f084979da23d358e6ce14c0b318a4
BLAKE2b-256 421f13a32ed3172a4d3fe1d5f1492c949b270162d5d122f42c8a59f49799a8a3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8c225a80e0ca4ef9ccddae1ee170efd0f8d422cb16257a32ef5b411eca5925d3
MD5 0d1d0f55c00f6dfd54f231f816cb5740
BLAKE2b-256 d14dc61d6c43c48118c099203f0f72bdeb8f81ec89e6ba575b0baa7dd00c3c67

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.12-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.12-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9a7c82f99cd4233325dec594a47aefa77744e778a0d7fd7e8f64370d334ae898
MD5 ecf0fc1d46fa8c41af915a570d431650
BLAKE2b-256 3fa08d69fb7ef74fcff5291f7a9cfca7e5457928526b10e7deb28baa7db3edc8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page