Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2024 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.9.14-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ x86-64

pedalboard-0.9.14-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.6 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ ARM64

pedalboard-0.9.14-cp313-cp313t-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

pedalboard-0.9.14-cp313-cp313t-macosx_10_14_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.13t macOS 10.14+ x86-64

pedalboard-0.9.14-cp313-cp313t-macosx_10_14_universal2.whl (5.4 MB view details)

Uploaded CPython 3.13t macOS 10.14+ universal2 (ARM64, x86-64)

pedalboard-0.9.14-cp313-cp313-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.13 Windows x86-64

pedalboard-0.9.14-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.14-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.5 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.14-cp313-cp313-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

pedalboard-0.9.14-cp313-cp313-macosx_10_14_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.13 macOS 10.14+ x86-64

pedalboard-0.9.14-cp313-cp313-macosx_10_14_universal2.whl (5.4 MB view details)

Uploaded CPython 3.13 macOS 10.14+ universal2 (ARM64, x86-64)

pedalboard-0.9.14-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pedalboard-0.9.14-cp312-cp312-win32.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86

pedalboard-0.9.14-cp312-cp312-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.9.14-cp312-cp312-musllinux_1_1_aarch64.whl (7.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.9.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.14-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.14-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.9.14-cp312-cp312-macosx_10_14_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

pedalboard-0.9.14-cp312-cp312-macosx_10_14_universal2.whl (5.4 MB view details)

Uploaded CPython 3.12 macOS 10.14+ universal2 (ARM64, x86-64)

pedalboard-0.9.14-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.9.14-cp311-cp311-win32.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86

pedalboard-0.9.14-cp311-cp311-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pedalboard-0.9.14-cp311-cp311-musllinux_1_1_aarch64.whl (7.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pedalboard-0.9.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.14-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.14-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.9.14-cp311-cp311-macosx_10_14_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

pedalboard-0.9.14-cp311-cp311-macosx_10_14_universal2.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.14+ universal2 (ARM64, x86-64)

pedalboard-0.9.14-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.9.14-cp310-cp310-win32.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86

pedalboard-0.9.14-cp310-cp310-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.9.14-cp310-cp310-musllinux_1_1_aarch64.whl (7.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.9.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.14-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.14-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.9.14-cp310-cp310-macosx_10_14_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pedalboard-0.9.14-cp310-cp310-macosx_10_14_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.14+ universal2 (ARM64, x86-64)

pedalboard-0.9.14-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.9.14-cp39-cp39-win32.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86

pedalboard-0.9.14-cp39-cp39-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pedalboard-0.9.14-cp39-cp39-musllinux_1_1_aarch64.whl (7.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pedalboard-0.9.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.14-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.14-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.9.14-cp39-cp39-macosx_10_14_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pedalboard-0.9.14-cp39-cp39-macosx_10_14_universal2.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.14+ universal2 (ARM64, x86-64)

pedalboard-0.9.14-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.9.14-cp38-cp38-win32.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86

pedalboard-0.9.14-cp38-cp38-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pedalboard-0.9.14-cp38-cp38-musllinux_1_1_aarch64.whl (7.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pedalboard-0.9.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.14-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.14-cp38-cp38-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.9.14-cp38-cp38-macosx_10_14_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

pedalboard-0.9.14-cp38-cp38-macosx_10_14_universal2.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.14+ universal2 (ARM64, x86-64)

File details

Details for the file pedalboard-0.9.14-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 553bbd1c4fcf107f9ccdee0b9c775ea686f498e3e9f4ac053b6cbf4e688e2877
MD5 a4d9a13c651d0f5bfed073a80797b847
BLAKE2b-256 ffa2168e77e5303a3894c5ebd622f9a1e7e71a5454fd727feb6d54a05fd68468

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0364193d46858d4d8cfb11a713ad21ad8cbe75c44fa5e0201497eb47028cedbd
MD5 338efcbd6170f8d2da5db0cfcea2a619
BLAKE2b-256 b46f1540a6e71f6599d4c68a304e64c97a9b3914f642921a2a4381a68c3c4644

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c6368c47d98d240397941026f9cdf35e338becf2f21e0aaaa4731eace645cdda
MD5 aa63152e3b7fd12623ba6b33151f336b
BLAKE2b-256 b971879a2e0a103038a6e5013a2fb658ae32e6d4316e28d52d9507e123ece075

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp313-cp313t-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp313-cp313t-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2a816916c698c9477a24867da6e4e91421ae9ec538a3ddfd0f71307faffb42db
MD5 85f0507e74bee3969d4487eefe8a2c77
BLAKE2b-256 3152092aaeb304758a21796614584d35d27a259d5c7710ec3866686a68211bfe

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp313-cp313t-macosx_10_14_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp313-cp313t-macosx_10_14_universal2.whl
Algorithm Hash digest
SHA256 f737003c2b6eb04ecc0e30e4d27d1a3319a97e40d16533d311e49d6a9102e824
MD5 d39617c6f464220714b9fbd483e03e70
BLAKE2b-256 c7bed733e9bbd0f050ee9eaeafd025bd5202b1066021f04f389d5bffab720857

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 92578bba83601d509a1f54c4acb74bff735c9be8821439ed574137eaeb2ba4c4
MD5 570acdeec6bebc00b1c8a2f490a26a35
BLAKE2b-256 85c6a7b528fabb9dc9b3d2b4b1b3a6f4983867e4cbed84ab836ce3afc8e8bbf9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8eff9b87335c9205f1e436201024b48784a8fa28b175d4f0b7c55005d2e63d3f
MD5 207864e628ecd6dd1e55d0e681c4e29a
BLAKE2b-256 ad7a8ea120f544d1087593450ad546c3f68283f33f4412c48fc26128bb3f882f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2361fc0d131a8d7932f2ceb1badcffdf6cda9c5fcdbd5227e15824f9e477071b
MD5 0e52c8ddb05301bf8aaa6f5c99cdd920
BLAKE2b-256 7e4aa286be6b620237e2f4195ee47baff4b3684ddf2a0778d0ca5e379eaae1bb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eeae8655d7291f639319796fd810b29af8459a5696fa78d3c8b9ea46f37b5999
MD5 488e871596143a34780b5b0b8fef2f6f
BLAKE2b-256 2633f2eddfc163174894af942d2e753a710c47f994ad11d68c9214582ed79279

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp313-cp313-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp313-cp313-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b543fc6598dce8b93554d0575bee0acfec6559c2945c119278140c0a2ffd3ac2
MD5 10a2bba69f3d95e17e1d4579a8f8f80e
BLAKE2b-256 a3d49ddec49f2dac98015098f500dab77e94ac7c3bd84d6ee453bf772e107fb3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp313-cp313-macosx_10_14_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp313-cp313-macosx_10_14_universal2.whl
Algorithm Hash digest
SHA256 46fc8ea31aa07df3730704108b5dd5d84cb2a9445d0011b212aeee51c0ff7891
MD5 f8abc90e78c06d43208fdaa97d329faa
BLAKE2b-256 bdf231090cda86b47159d24f94feef341a2b2e3ff6aeb7d8dcbd5883ab3132e7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4c6d7f605c37595ae015620629b94929ec0860403e54fe1804c4cd3ff62881ab
MD5 8113450aa6f1fd6beea72830591d24b7
BLAKE2b-256 1bebd9939dc4152168323350bba3797f795efad744af339133398053e1df7857

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp312-cp312-win32.whl.

File metadata

  • Download URL: pedalboard-0.9.14-cp312-cp312-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pedalboard-0.9.14-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 eb55da3a4b263f475b2ca0d2fff8c9755a2d1b01497e67ef1986771b6fc4447f
MD5 209c0076a465163f63519c7608e460f4
BLAKE2b-256 24c48c7e6a2445b9a7d61362ea52458df76c8d0fbec9d43b9737b1c23c3f52cd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cbb9a89a9a44dcb7e29e19b3a92d03760ca910f8a17a6502792a5f51f924acbf
MD5 24092559e8fed586f563fdb0da4145a0
BLAKE2b-256 043340ba5778c0e726daa504535561fd12f83af901a3df88869f4570f8998c6e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b5a7014eb07d24b26272421727e32b2d7508d7bb5bd9cd885fdc73449429e3c7
MD5 7aae2d201446c682f64f4a69cafec7fa
BLAKE2b-256 4e6e50d3b2c50c4aa9f1433d9eeacba1cff17779f87eb7702db375272072ff2e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0d9b977a585989a78e0be3500e4e467e5c004d79f6e8a41e68985f3d5b12d4dd
MD5 21cf55e293aa9c908f7085e18ab00bbb
BLAKE2b-256 fded6c71e8c0bb86f093280c07adae157fd18b4c0eb3431e1e5879736dd4d709

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3ceb849e58d42e6482652ba9b0a62a5e3b209f5d34dc724ef74098f85d21b327
MD5 9bbdf51289f4b4d6458cdd847a571fe6
BLAKE2b-256 a64ff77951c32c858acc121dbda42bcd4d5c821763aa7c4f3cc3bff3c67c7759

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a291b7fbdf7fe8c33f18e502f5cd8135e1d3e5d3e8d11d8e0799a67fd1b68db4
MD5 45659fdbab61aa73c024e8afe5d4726c
BLAKE2b-256 5caa6007ef0955dee0b61717f5b31c0a818c9725c4bb121ec76526a8c01c67bc

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f3f3124298360266c5b9cd459241a7183b400a924119fdab8fc05a42dd94d3ed
MD5 f3377024d08f10ada19438c6785e09f5
BLAKE2b-256 1ef8eb7666c17737e1c8b003a4c2a4eeb94316013f6e786b38c6f75a919235d6

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp312-cp312-macosx_10_14_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp312-cp312-macosx_10_14_universal2.whl
Algorithm Hash digest
SHA256 97a1a13bfc3c6a020d41157538f0d4acb266cc67e0a8f07c43fec4ba5dc8acaf
MD5 368532d82baaf84c7cd8de141c820c3e
BLAKE2b-256 12ac2aecbd8446fd084c41c344c38a0ec9fcd9d4ce94e6beb37a74c0393b7c57

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 75664c542e9a09a7221a37e5a5f0c244f4280fcabb2cb3d09e46e575548f39bf
MD5 7eb9124a27869697f5032fabb0b3e9f9
BLAKE2b-256 ddf29e3587833873196c5b891213c6989e9e703f19fca028841a3ef0112938d4

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp311-cp311-win32.whl.

File metadata

  • Download URL: pedalboard-0.9.14-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pedalboard-0.9.14-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e60f240fa279d3cdce3c0d80828965c778c0c516f2cb63baa83dda046f7e5bfc
MD5 002cf026eb7f5fa101f6f250a6afa98e
BLAKE2b-256 22e72c084083627772349ddd7d187c936bf44c81615468bf89ac6af25a3e405d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e0963393f96143ebe1683a1d62c1b8d68269dc901d691f6b18f918fba951e12a
MD5 c0d497a5d353fb5b19f27afce33e11c2
BLAKE2b-256 162c8a8f3c5bde9ceb1d13d4d28163e05bc361ce58b9ad7e31f95b30bd745f14

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9ce13babaaae536a0457407ef9932d63dda86ba37643b178f1e396d43ee24821
MD5 0694333a9c005fed08e3bdebe8483678
BLAKE2b-256 200afa73c0b0df647686b47bd081ca09971f353146c0d089bbc59147b8623fc1

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a1b2f7e9e355e35beed9d2ac1e331b2ba0902f82b4d9879067a176a77b6c6983
MD5 d70f3b6d939b50c432c0caf050e29c35
BLAKE2b-256 e380276cd990315643e0c6e4a0d16da1ed3ccb87e6450c49db204b95ee1a9e29

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5d00c62bed50354077bf9020d63d0711d6436f66c9883b9fa74c1bc717c15d4c
MD5 1455e5ed2cf4bcd710685a2898254cdc
BLAKE2b-256 5831de8e3f5c3068147a5bffa7821f1c594bec3ed84e2e5fec12a69aa27a49c2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0df53106584eff228bb46297eedc4f803c3a4210a604db5aae0601f65c3032f6
MD5 8d4e64886dcf078a3f341a24a96e2904
BLAKE2b-256 434eeb805eab93cc181b2e6b46c647b2f0c27eaac5640dfc747ad9a7e3dfdc2d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3f08059f47a6bcad43b3937725e1fced5806bef71ada6ed7fc4e45e77f8a7df8
MD5 cb796b65d95d9a2aa095186092ed6da4
BLAKE2b-256 3b2c5d5b1f2ccc452250af51046ae1b3e8b94cf5a0a07e5f07e2b3c8e194e78f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp311-cp311-macosx_10_14_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp311-cp311-macosx_10_14_universal2.whl
Algorithm Hash digest
SHA256 1f7c53164cda8ea11d5ba513b1e1abc0cd26e4046ef04ac0da044804a602a4dd
MD5 36edd5aa31f22bc3e873f052fbb9713f
BLAKE2b-256 ef313aa09cec091bd8c5b959abc54f2c911d6ad9fc70de21b4110e9c741a0b27

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6c9940779bfb7d16717556a8921522a0b2a03e316699a3b0584c8e7e4fbef935
MD5 6f32244a11e25809ae4de3e9d2f65510
BLAKE2b-256 80fda4b3356dbaae42a2cd50cb0fcfd52dfa1f9b8b3ecce52dad9e5af2f95ac5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp310-cp310-win32.whl.

File metadata

  • Download URL: pedalboard-0.9.14-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pedalboard-0.9.14-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 07b8f9ee5a237003c78da95108598659190d9ae3f6cccc7a92d79d5585e7e339
MD5 98912fce8c225c871f1dcabc0853a868
BLAKE2b-256 6c56368d80ee7d16b2c4e111451d7c04eb93712d1e7d61f89b7b8b27609cd023

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e11f95587249486057823a7dcadd2fe034a2aa592e66641aa522cba604a53b6e
MD5 628f7631b0e2b1eaf5ca10b4d823a6a1
BLAKE2b-256 bb26b58a9e4e9ad6055860f1b0762d851b906c611d147addb74fc4f63dbbf84b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 977ec611b5690e933d065819d1153bf71654b819e4a84d78c0a47d07ccd6893e
MD5 1417ca4a962a0022f0fbf5b67c9955b2
BLAKE2b-256 c6938c61e81485f63333b2643c465e6c2ee9c5c4139392358cfdbae514e0aabe

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bfbec2293d780e795d8cfdaeb6e11a1f8c6da7a1f7d7dbcfec6b0b89cc94a08c
MD5 fd2956766d0e5c661d84a7c5f1a64121
BLAKE2b-256 bcf4822c7603b8bce0a12c25bf3a62c9ce931180ac8d2b20c9635ce3a9f85133

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 55a2645ea656b303dcba8b0303b7670b523c366cac73a77c7a8f8c901705030f
MD5 b5f05ed8ddeb5765d57038a4aa6bb95c
BLAKE2b-256 7fe73a1fff049ee2179fed2523b3c696f3c7ae1ff86466a70cc77ee0c1645bf9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bc0629adf33b4e1250a1ac2b199a4d68bcc65bc120eaf79786339f8c3149caf8
MD5 d8c1c492fa25fe44a72fbef31113a081
BLAKE2b-256 e7ff076b2f0ec73085bf1d8e42e5a4eb4f282965b6fffc3b78e92192f4127ebe

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 aad7c253dbe6b8960199002f74b902c3c24bdf0da6c2d2fc0f5ca8da0ec8d7ba
MD5 b5cb28a28b0bba8681aadc03c25e2190
BLAKE2b-256 75b8a5f963e0510cbfc622a273d1e327bbf6be765846fa588066674a6ce055cf

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp310-cp310-macosx_10_14_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp310-cp310-macosx_10_14_universal2.whl
Algorithm Hash digest
SHA256 1e906c5044b8fe748a8a6130b798ca11c36c1225c6952a0cbeb2ff5d9c8e636a
MD5 e05ffdbb3ab7ae886bac936055ccc873
BLAKE2b-256 1ef9ab087dffe3f64ec9bc74209b36b37e657c766af0f3d805db11bcc25a7f1a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 21258bcca1930f79a010ad3d87850775897922dc995db09f3f04bcf5efc6a021
MD5 74779c6c1d09c18c4351226a0d83ab0d
BLAKE2b-256 71cbe835dc43656a50af257ac70c93e74a90aacd6c0414d2ac8d99674e168cbf

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp39-cp39-win32.whl.

File metadata

  • Download URL: pedalboard-0.9.14-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pedalboard-0.9.14-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6ad0b5f37db296b6fe358edbd415079a7abe2f1a1e9a8cd15e2168185f966411
MD5 eb8bb88ff0d4f1a2ac6ccb887bcadc76
BLAKE2b-256 7fecda451de1d3679cd9a430ecd23e35c15b08a4dea232068a26365805f324f5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0ffbed72bb688b5dbace99425af275d0ce8ca7886873d3e7254967732d23c733
MD5 d77fcf96850c2a855421380f7c097a96
BLAKE2b-256 b54232e725ce2a1167455ffab3d8881cc5b8e4460533a23d9c7d8ed956989ce0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 38c230dcf24e70738a6f37e4fb62009ebe1756eb7bd39e464df03c2728c74e78
MD5 23c7c8d6b1d3081f086aacc3cd487778
BLAKE2b-256 8a8602ffb3b6b6246379ba11fda0e00e1f5d31d113725ef063b259a67eb768fd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 807e9f2723e54919ee0ee0763b4e6eac69cf3342c72ddc00976c30217a424494
MD5 77f06d9a3c93dc213d3c70e2e53b2e36
BLAKE2b-256 9d4af624fd958e2aed3a72ca0588c3b4f0bc85bcdaca1da407b969e4e183eb17

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8703aac9676e15e27544e355d2609f7e5ef76591abf064c6a29d7c58aa532c61
MD5 d0f0fb2e52a7bed834f9e7724e1d2ce7
BLAKE2b-256 880db91766724356e2142780c46379a1ff6e7ad06d42a668e6bac1e085a5ba4f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ac825ae977e587543f88c64fd79ae48bb8187e3020e34de64f2031328c7f2762
MD5 03c8cc61bfd05b04283fe4ef8c4b2c65
BLAKE2b-256 9fd47467d759a721c72612885fee2394118fb926102863c96e24b942093ace70

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 071a152b43317a8e7e4a53f5705192da5ce215bbe9010244197b67b10eee4074
MD5 699bf0f4cd02a5cc8b90db55f84641ba
BLAKE2b-256 fe58cdc218cbead1ee3a956039223eeb731c0468f9324985e33399e638efb0c0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp39-cp39-macosx_10_14_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp39-cp39-macosx_10_14_universal2.whl
Algorithm Hash digest
SHA256 171572c3285bc1f3df3f6f10bdc5b674d94bb3559aabfe128f33883c90df294b
MD5 d40dba6dd93c53a6385e06a0acb377ee
BLAKE2b-256 c4cb311797959ef153fda215431005ed08a13baf005905d1d4a390dba695dbf2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 57c016d05291e33af8b27d0d538aedf7f67c214c11a479bde649e0bb690cdfea
MD5 efc152beb3c61b9e53e83e5e3b3599f2
BLAKE2b-256 a386643632e74ee2a252c3860b8ae078c567c953067236b4cdfb9aa651094b74

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp38-cp38-win32.whl.

File metadata

  • Download URL: pedalboard-0.9.14-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pedalboard-0.9.14-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b19e41c9f136f5c15cddcc410322ffee0bead9aea4d13de075685f8b208cb368
MD5 a939b501559608f1e49ab8c454835f84
BLAKE2b-256 3b83642860dcdf2b793ded9a623917f2ff5fab08b69f81e2eff4a3fe426d820a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e44480740c86962e5f73b183c09ac04da61b700da037cdb6d43f67502a688908
MD5 42094dcc22b785f58df26d7aaa12629b
BLAKE2b-256 35e22cfcd8999b038d8db47e9b1673e28c3174a115e7b289bca25fd46fb01054

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 55fa610b8ed7ec644b26ddbe5d3353e7acf184a67a72a05fe24f5966576e21e3
MD5 09b69eb7654bed992a623a92ff0be1b2
BLAKE2b-256 459681e13af388f628e68cb7024ffc3fcb75fe611965e0a7568594301ff7e997

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99171f59ede5d5659bc7d7582741b41acbed2be05be649b46266402eeb7801b6
MD5 513556181f4d2bc7e08f73476c900a10
BLAKE2b-256 99548e5351f8863d1bf9c0cdd5180541fc03ebc78bc2393f9ba7c5dec7d60d7e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8a443d6c3e3e6b783bf6c7ec3170cede1c540d7c0695a48de4e13ef8c2acd368
MD5 a56d7efab7868d4d549b385619df6b50
BLAKE2b-256 b318b1e8de8518aca5652d497cd08c6e563cbc4c24faf9b9933a09d7cbef0226

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f21b32be6b2cd9c805cbb433e503e6c2ddeaf71423e1993f345d71adc391e918
MD5 50033eef7003d8c15d834ee4152c72bf
BLAKE2b-256 41b2fd44530d8d96ab90adaa236d1e1a1124ebc0cfdd37311e49431fa2396dce

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 82d309f94eba13fdd2236a816a8ee060e95e533bcf0baf55c77a97460af1139f
MD5 486111a3f04201209d1729c1499eb710
BLAKE2b-256 df4379359df04b09487af250a4b970a1c359abe7c358baad7c64d2e63675e628

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.14-cp38-cp38-macosx_10_14_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.14-cp38-cp38-macosx_10_14_universal2.whl
Algorithm Hash digest
SHA256 38378ba05a8b645c03335b53ba63c9a9ba571f1afd6f1a2dc0b1e07936a7dbf9
MD5 abef2b464cb7fe36c4ff97f84602b6d3
BLAKE2b-256 e2bf0d8020ac30d642582562ef10e5c0a158a2dde0d856738e3a0d87df1fc3f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page