Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2023 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.9.2-pp39-pypy39_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.2-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.2-pp38-pypy38_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.2-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.2-pp37-pypy37_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.2-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.2-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pedalboard-0.9.2-cp312-cp312-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.9.2-cp312-cp312-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.2-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.9.2-cp312-cp312-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pedalboard-0.9.2-cp312-cp312-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.2-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.9.2-cp311-cp311-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pedalboard-0.9.2-cp311-cp311-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pedalboard-0.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.2-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.9.2-cp311-cp311-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.9.2-cp311-cp311-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.2-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.9.2-cp310-cp310-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.9.2-cp310-cp310-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.2-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.9.2-cp310-cp310-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.9.2-cp310-cp310-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.2-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.9.2-cp39-cp39-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pedalboard-0.9.2-cp39-cp39-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pedalboard-0.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.2-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.9.2-cp39-cp39-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.9.2-cp39-cp39-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.2-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.9.2-cp38-cp38-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pedalboard-0.9.2-cp38-cp38-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pedalboard-0.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.2-cp38-cp38-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.9.2-cp38-cp38-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.9.2-cp38-cp38-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.2-cp37-cp37m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.2-cp37-cp37m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.9.2-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.9.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.2-cp36-cp36m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.9.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 02b2115a975cc7b43added6166ad67d28d3352a30dd936131be453b009b78fcd
MD5 83d967fd885debd75ae2c472e289c012
BLAKE2b-256 ada265e329041f519543aa9e21f767ff54c0ec55569047201986702efaa4b352

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8cdda26eef0985e42620beb74c8e86c6a4a6a876d9c7fefddb76db2572ee2dc8
MD5 2eb407bffccaff9005e9304c6d0b42b0
BLAKE2b-256 e078a5c55dbda8a030bb63185d4eb7f7e5cbd81588f796dd9684b8938fbfe65a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9c1eaf6e1514cf98996290a86caaf4b4c85498473a8de39641ee53e0321e4062
MD5 38521c33079ea750fe4cd61592a015e6
BLAKE2b-256 ae245c8727ea76b0f62c239cbe4cfc528239600ce7abe80c8f0f8b5b32f7fc55

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1c30b361efee8f3ceb34ddd6220c5145905ac9d6a554734d057096dd9e907713
MD5 9fcf0155cf5bd2daac1942921979503e
BLAKE2b-256 61ecb3203a1a216c40cada0da4207b0334f7cad0f2baacb04832036321db52a9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6927e111ea1f48279c1ec55b2ec4173d3b1c3e48552b54ae5e63870684d88234
MD5 d9870a407d60f3fc070e73c9a021fd2f
BLAKE2b-256 7487972de81195da436d054c9ee3a77517385fd8fb07cafefe81b7e40b1daab1

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5854e973bfc4ce55e61209b7705518fae3718e4ae8aa84625508ed63eb9ddc3e
MD5 fe62d4fc6d3d9be91ead623acd6eebe3
BLAKE2b-256 b983cf8fb7380a0a9e367242d2f7a028cdb412da7b333192c86e497eeba08806

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0851844ce8594dff9fc7c8050c64791007dcd653853de2f96aa1c888787a3bd3
MD5 21b380189de7fb948e273d1d05729bf7
BLAKE2b-256 c7c407ede7b3cd19246f0b6332226a97366024cb05ee28fd1aafa063191c4098

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 95468bbff1a90f0bd59729e878b0bd01b8989f7007ced52e7ba3d99db1c47027
MD5 fdfa4c34dbd3333d19f562b721f12331
BLAKE2b-256 72383d6024c7e8fa5c4e1561573f8e7fe911f0e59c923f624b634d32df30a717

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2d6fed95725b626ca0173a5c660ef6948e617b67ae33a1ac25e71fd90836809b
MD5 e4378dd01b1613ef8bd8d879e40d3bb0
BLAKE2b-256 bb92b08c63942cfee6806f69ecdeb1ec11aabc97cfbb359a0fbde505772856db

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c085f5cb507bfe478e4d46ee300ccb04809980f6ea1c5e1c9b8015b9ca7de11
MD5 67c8985d234de317e8dec3807135ebef
BLAKE2b-256 cf029214268741f00329a45fe8e14ccd97691dc29f63c8b406157511a41c6800

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 28aadbd8b672a9ebd65d4d941c2cf780261e1e7730926985d0835abcdc3f3371
MD5 7e0fce246e1c2e24d6f7d750cca7bdaa
BLAKE2b-256 e0bd8b5354567fcff3e507e7bf6e26e6b8a2a103e7c46081855382d3f41836fb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 608959c8fec38cc6977382ab4be16e89a26f833e0243eb573660af4b43821d39
MD5 b38de012cf9378c83028b9d945f68c89
BLAKE2b-256 121ec0da1f45fce7355151da4c4e1028e1fe986b61247429a544aec6e0db3587

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c5692f48b177f266593ce92d09383f0a2684dcd0e42ba18c0860541d0ce16336
MD5 3b6c7d43f95ce3dc271f6eaafb82d29f
BLAKE2b-256 931aa98bda6ccfbde5d645753f0b2c59206efef9f32a9540e572b84f8a99592c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ac45125262c210a6077fd9cdd66a75e19ea93dfd168ef5de07b2ff12e291b13d
MD5 ff3e01e058fb1b55dc7137342a77d44f
BLAKE2b-256 1bdf04f381015835ccc3ac2d81181235b4f11626330afe9a14da407f467d7352

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 006b0a851f3881d5b055cb4797c1feb4d748d45858ab11577e116f74810b987b
MD5 7d358b9faaeb7031d851bae817b6ad55
BLAKE2b-256 c41ffab74ef2d395c218fbc7e54a09cff275071b53fe9023effc53a2177da0dd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39370f0e223076060080aa63bf86834c097bae7c6dd93afea61e6a8cfc63f3d0
MD5 5b15f26914820b0b52fcf0534f73b739
BLAKE2b-256 ba2854df30010197641beb61634e8682f0879b7021f3eecb1f86f9d837a6aae2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7faa77b856d43430f5ac62b6a654a3e4d58cdb9e3a56a505168fbf68f7e990c4
MD5 91fe82a3256d5eeaaad9e81cbecb9f26
BLAKE2b-256 8dc6221cdc73b42302ecdc431d1acbf298b70f81bb347e119d1280043adb818c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69626587551a8ef9c6877eaa55f96d6c2454bd4d2450a048bd225a8abbb79312
MD5 91138431b0d86445b03f038f15838acc
BLAKE2b-256 effb073fab1522164e085bd386b349189ead16752eb6965759b0ec384979fa18

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 614bbdde2c69261264c351655d35aff7a90fa13b421f87567aaacfda691bc8ff
MD5 73bb3502e417634fe94b024853ead331
BLAKE2b-256 d6e564e432ed4e800bba89303c00ca6de831686e07177500b0818290a81553f3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 af839d9ccba8e7f6825ec5e0af5c722d0b3dcbac22d0b472151f83bc2aab12c9
MD5 1524c618d41f91183d71d8e5c8b356af
BLAKE2b-256 eb0196daddb21c294c6f197adc49ca9a591a0abc1644edb20bf13b8551ac7923

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d12ac67bd9f6d184931ae5d0e5474988da75abe125d08d7624a43f3fb85caa1a
MD5 8473bc423352849d197f5e2ad276736c
BLAKE2b-256 934ca06384e10d5176adff4eb518807d46849d3b7e1aed36e37e8ac78645014e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 84cd2312e7ee09aa42c8925759627aa5d015e2831f2934abe0c37e58725ff250
MD5 ab0af878ea782069132adc80f326c67c
BLAKE2b-256 ba94b54fdd4734a43084a5a6679aeab3ba35d00f10e7112985a7ebca425156b4

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 077a3b81442fb9e50bed2bb5793512053b48a9e264b6fb5c03f875905b9dc2d5
MD5 86eae1e188c505826fc4e4a198500d7f
BLAKE2b-256 3804473f1d2e46e4b541b8ee5494b3cb8554f8e2ac022c952522d4ec9c50e772

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 21305ad5a1628e8bd870b93e709fb90c757bbca8b1b7c190f558c3c143ab5888
MD5 54085945633619d62f0b7f92d8ee68f7
BLAKE2b-256 453c837a41dbf87fed38806b4b001afe6c5a798427725c7213e1616f9060d4ce

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 31cf3ae3c7e99a7a5b6230d3ec356d3c498b66394caa335f982558942424b193
MD5 bb0b804bfdefa7c31c4e9817bf279055
BLAKE2b-256 d24269ab88711682eea062856a02b98174d0e627f4ee8bc63a472c8ee1ff2f43

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fffbb6b61decf41883a9cd9093d8df4ae627a8ef843eb8c87d3a91a382c4bb51
MD5 acbad29d26ea14814c4712727e9fbd11
BLAKE2b-256 f2f29c9864efce24ebea886fb57440263a6a9d83ee649315dfaf1f937cf38129

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7e7fb4484f234c2beb52c693f9329e83e7b1889723b7a38e1ae6f06d1af9001e
MD5 609a641cac6c550af28a15a54e824d57
BLAKE2b-256 b38f694f2aeb2fc69a4bc15b7b287a94f77e942b0f84aa0f592ebcc319c0469f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 558273b0b70595b7cff6c50bf61761518bee62e4e35056529d4e05617cb6680e
MD5 b0db59287dd90fb1c732f07ff5a3eef5
BLAKE2b-256 5e0d03b9db4a8611e2d834abfa6161b587993136d385c280a5584fba9addf1bf

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 599b8916cee41a8ed6dab7a9ccc0babf4af47a139efe64b437bf70ef26054da9
MD5 de38081b95bf18136c0c8c45a8fd6bdb
BLAKE2b-256 5eb8405dc407e54fc9d0efadec4433e87fb6adda08e4407c7a3228c129ab29be

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2bc5ac28a33ab7cdea3d129da6354bdd4e0e49263d5193e002ccbdad38b95d6f
MD5 58efccf71c8fa24b7d57afee46b412b8
BLAKE2b-256 a10891663ff9b7d8b5c40c890b540215ece0eed6c5a174e9d0d1ecf53f705098

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 235119b60efc1843b10c6d9592821e7334aff3fb76ce695e816330286ca2067e
MD5 47d1f82e6cb617e475f7122189620cd7
BLAKE2b-256 18dba657a35f78e69e30af0a7670d44044b9d9c8ce4ea1e48288822b2c41af6b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e0a61f8a23e1a54e4d5997a156c78056c76f3c94906bdb8dd0bd947d97e97d3
MD5 542b0375c907a28ff435453993f274c5
BLAKE2b-256 45e8bd7e72887f7b9282118747618acabc86103b76b85ca482292f80bec65e9e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ce03912a4ad631d0c33c7ba75900895e837021b1c1cc7005046f91c63b0455f1
MD5 2f281c1de96e7c94002a475a75474e9b
BLAKE2b-256 4ad90bf12b10623ebefddb574260da642010c76c07101ccdd20575b07b24274e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 274e3105ffdb96ebfc2a104bc765cd9b0b0edd987145bccf53c48f3bf2a07cfd
MD5 70767b433bcc116e419dd53eed921d72
BLAKE2b-256 8e15af497d70b04678d04ae5b67a367bf7fe0b10b8bf1dfc2064e98bc9d0aca7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 87f0774e50cab6d61379c4bde293de3fbba97c74bfb599ace1f846533dd6dc93
MD5 979493b692427deeabbaaf2579c01fb0
BLAKE2b-256 e976442196dddba263c51efa73f701de061428672c84d1daaed0a54fe80c9648

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 6c2681980e2a34ce8477aa6cecb5d4377efd06100c27c6640a728ca4fcbd831b
MD5 b6b533f3f2c51e60e599d8a1889b3d7b
BLAKE2b-256 7ca39e83944c933de072e189748e14e8fb3aef0a9b536f6d1f8796aee4b27e3c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d85ad35fd46c1a0be32fdf1133a987c80924b7e9eb36710c3f3ff22d13855b54
MD5 c0f8052973f9622f177ce8b235c6e61e
BLAKE2b-256 bdd34d96103457429f6c7784cc57eedba852eb2323a5f671d0034104b3a03d64

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9d2fb711af424c33030a416dcd62e6db817fe04b0714ad8937ba2503911a13b9
MD5 6214ce37735e7756edf00052c1456709
BLAKE2b-256 571602035ca811c450828f8d07e2b27d4873d551a2e57126b7796a7404d51344

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2b5b24132f1a85cbcf134340e8ed3191e8673b00597a53a06de9664011396927
MD5 71f511e87155b5149e40397f06cf5742
BLAKE2b-256 daff7d95436ee680d2de972155cd460af9a7d45a98ebab1bc3ccff113ca5b377

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9bd6018b3dee0e31ec8ea3e1372741366fe1726a14e9fce7407531c471e4346
MD5 6bdd473c1cfa6b3e94e412762029fbf1
BLAKE2b-256 7b5734c5595e49ae767ff38b30ce3c760d158dcde5b20a30acb2e52b12354d21

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7478144b9c7feba00eb70fc5bfda003305908de19c8e1bf8d7742e8507d3b639
MD5 dcd8772e6a08c6c5e37b61bf584859af
BLAKE2b-256 8bf534f012d21fdf230ebd2aa9498aa44ede8892ca18ac01fe04b9b90b8177ab

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1d76c97eee886f20f0d1320dee3c922e77e6d337900d7aee25a9c02cf145f4b5
MD5 53cd82f8632c14e4c56ad82c97e03058
BLAKE2b-256 b266d39504798fe6e3b830485add90ec79c799fc6c85515487d0256a6e3710cd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a497cf6adf0123c5a7c0f284b504a17c21f572da69f14bc613ac39e1061249c5
MD5 f2ddb134c716839e88932fa9127bec19
BLAKE2b-256 88c40de79effcf0c77ca81697ceeb4c92b557865112c0defc3b2fe8b9e254d50

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 e78de457d54877bdbbb8160ea6a57c2fb85dc5cb07935a8387a5d2768a0cd9c8
MD5 134a6fd8190a952e8457a18b5702b7e7
BLAKE2b-256 d292e76a7be3916b7fcc2f838dbe768d857e9f2f266f2430abb870055ef0c184

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 83a8fa272bf3c82ba687e8f9b108f2e89b80ea61b0640c34027a1482733448f5
MD5 6dc29254841df7f828d4fdc3fd840364
BLAKE2b-256 10a271f4e022e32d7aa363b435910e19a88528267df5d496f998cb46dfd7e657

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 05017c69a0dcb2c8d82c6f2a6a48c2fc26d8091905977f2dfb8d894013275f88
MD5 4e9a4ff48615002dc965f859508d81c5
BLAKE2b-256 485b6a75caca154dd48782a80784274750fcd71e8134a81a08b3dacd3c519dc2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d14ff41d0580ab1de5b0d1b61817f1eedfd100082cb5f8c25c002734ea987b97
MD5 4b20a99622bf7b97cc39ddf11eb9b431
BLAKE2b-256 3cbf9cba74216c9a0a781b4cfcb185f0a8a2fce2af48d1d0363a975d03a0494a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0072bac2d3ea44d9e7b89d0d013dbdabced0be23a925a6a48a8699d0aee2c913
MD5 6dbc038eb34042741329fe5080df8c78
BLAKE2b-256 62f73fda3f4fc4b5960d85838c2c747a5fcb94853e3cef8f42e3280e535cd713

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f9bc737e8a62b5fac79ab266ba0bab948bac632eb845bd658fd859267458f4cc
MD5 a3169315cf17ea677ae1e37ae5e9920c
BLAKE2b-256 0b11dc88cc787ab351167dd4697070b8981d46ec18f2ca17104ee5666943ece2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c1e83483059137d5b594708f89be6c419c0920a02693398a71b79bfa40afe761
MD5 713fe57fe9e904d2d23a8f1109b370a8
BLAKE2b-256 57b73d6cd9a9c7d03e51b3ac2400b3f986de6ef9c63cceb5158deddc0f9b34e6

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b616a914e3797c3ee16f3d32f75f5e1cdaec2ff0954a455ff0f516929f7b2f22
MD5 e630ab838159a6d5753e5667495f361c
BLAKE2b-256 731ded81b846e20e6ee46d5b0ce008d7593c7bcf471b7ca0673d4799d2c534b1

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 ca6c91b957aa32eaad2a480b84d4df71662d389a78b875e4144225fb5305bee7
MD5 e2a7385b2fd6befc0606353ae9649b14
BLAKE2b-256 8bffb11851aef0383ede8408ec886987c1cbaf9c0dda05b062323b3e3c8217ae

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d347129bb31dba086f8812fdd4aa2eba013cf1931b34e66ab88e35c25b81b9d6
MD5 4e3aca9c39bcc7f799f67386978d7582
BLAKE2b-256 ba814dee10bae155585ec5b8b524e93941b16161a33c82c7c146f49a044f9c28

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 012ed6f926a41957f21d9dafb2b1b098a868cecf834e9ee4d4136a4557d77719
MD5 b0183853f5f83c81b8ceab3e13c14398
BLAKE2b-256 632bac6d9a8cd6eb4a4bbded7a9ea1f09a1773722c6a5deda12c63a472017e3d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f5f6531756ae84f0090b78bd7436ff242c24ea2230eead23c2378d3d6541d60d
MD5 76606c689d9d6a348f1494a0f2e485db
BLAKE2b-256 443bedcde6489c47a6df35fb27d051aeef24ee8f15ac888543b7c1c78436e1ac

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c9cd1609985bdd7898580025850a20ff7fc435d08cc0457797361532b7818196
MD5 d55e0896ab8162de8f0559ff136c8708
BLAKE2b-256 7244b8b384078c29aa638864bf0b03db1d96b2c4a07aad93398082c7b1e04ef2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b75a03442da1e863a9b6ae131af7f3e64bf02a3ddf13f0a80f4fe2a6fe692a00
MD5 c6da2f4a5a7fc80ee6f1ddcd9e9a8fa5
BLAKE2b-256 21437dfc05d16e8715b960644b7688f4d3617b8508c8e7fc2202b51c7910ef3b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 679a2dfd6f59631ad28acbd5c2192b516297b108f444e84b848acd9a64f3a75a
MD5 e17d30a1ba33853453252896c9feffa6
BLAKE2b-256 2d85fa885685ec2cc871f0129ce11d5b8f6ef0f5441f1ce7c90a9f4ee949b566

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f80072404e73f2be920cee6b6950ecaeb8cd872dcbd465fc31a0478fe11257d3
MD5 415aaf49a883ae53bf893e0e7a6144fe
BLAKE2b-256 f2f3c8dcc265d7ad78fdc55d0b2e675e2abdeb5cfe044ea44f86191dbe5a06f3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.2-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.2-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1cc1ff056696656660a96845a85768e0225796e16266bb65c70b56895108a85b
MD5 c852aca206641a786057f2c9c4932269
BLAKE2b-256 ead6e51f5b18fb6a56cf1bbd2af92aab26f08d9b3fbd01f0b6fa242e7a53b475

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page