Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2023 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.9.3-pp39-pypy39_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.3-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.3-pp38-pypy38_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.3-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.3-pp37-pypy37_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.3-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.3-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pedalboard-0.9.3-cp312-cp312-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.9.3-cp312-cp312-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.3-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.9.3-cp312-cp312-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pedalboard-0.9.3-cp312-cp312-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.3-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.9.3-cp311-cp311-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pedalboard-0.9.3-cp311-cp311-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pedalboard-0.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.3-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.9.3-cp311-cp311-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.9.3-cp311-cp311-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.3-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.9.3-cp310-cp310-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.9.3-cp310-cp310-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.3-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.9.3-cp310-cp310-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.9.3-cp310-cp310-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.3-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.9.3-cp39-cp39-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pedalboard-0.9.3-cp39-cp39-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pedalboard-0.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.3-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.9.3-cp39-cp39-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.9.3-cp39-cp39-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.3-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.9.3-cp38-cp38-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pedalboard-0.9.3-cp38-cp38-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pedalboard-0.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.3-cp38-cp38-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.9.3-cp38-cp38-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.9.3-cp38-cp38-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.3-cp37-cp37m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.9.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.3-cp37-cp37m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.9.3-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.9.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.3-cp36-cp36m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.9.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b75068a0e1432d803a6267b9ccc26dfcb9ca45a607536f3e7e88d4a6fe6665e3
MD5 0c620ae8adb4ae81604f9a034bacc820
BLAKE2b-256 6acf0d98ca9d6259ac3deed83beeb41350aa545371a9a9863531f7b3daab55ce

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad32c0ef877717292b211789ba4c5805dc609711af11f80093334154f87c837e
MD5 f3b04bd40a3675d6cfb15bf2d7e20e25
BLAKE2b-256 8933151d99ae9ccb50381591413fa93301492983d79e13aaff488f27bd2fc07b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aa806808c323153d8585964c3ccd140130df862ce0e185df357533c1a936937b
MD5 1236cbb3b8659d92fc14f8e207946981
BLAKE2b-256 9672656481cf788961cc643ec9ca3497526a7ace7fcb39713fc6793295ca7051

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5359e01fea049ee410e64146e59dd4b92a8ee8195993fc75b7496dbcc0d3906a
MD5 a11727175f4902cbb7e66826a88a305c
BLAKE2b-256 aa96760311949fc9e296f1cd70d1f8097e37d93bdce71117087eceb9c3341a8c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 afa80e0aaff0649ca107919b3010c454c6fccf47ef67bfbf44b16be3bdf11bbd
MD5 2754841aef6e26a118bc0456044d5eb0
BLAKE2b-256 ee513b7e170d7bfd16e148bc9b8b68ab737d12c78c9262a5f09b39410902d336

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 914e7cf49cad85803048dba7e51010b204f364c5e9e86c6a59c874532bc8bf9e
MD5 fbcd0bc6a66c13e636cfeb1d5dc91557
BLAKE2b-256 e53f0b472d1aa2cf5b0096b9fa61d93bc7d4d4543c6e6064cfc90bddf60caccf

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fbf349309a7faf4453b78bb776d23a66ed260c64f3175dd4cd2bcf4205cf7014
MD5 aaf9a42d67dbe5efdacc478cace86f8b
BLAKE2b-256 c7571805c5690f56321e705bec02a62f693291d357e4c7b4660e6cf36455b769

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4e4103b773136b08f7dd9a9bb9f4be7159565990ab1047439afa3c7c539f847c
MD5 5704537c392abb235700137970759157
BLAKE2b-256 9e8591f6011ab1dc18746a0b7568c2d3e2ac049862cce6eb5ba5a21ac007cf36

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1cb8fb619b31b00bd2d7aceedb68889fff8e72f620f78a297bbb8d3e17973201
MD5 f520e1bb3875e2ffd183989864f49420
BLAKE2b-256 1160f7349ff0f0c0370e44ac2f563f0672c1656cb5b79c26af697c3ace5941e3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 776a79ad64a131193b2a8df33e90e8dfa0499d15b65d23db01606ba1f434d224
MD5 e700f9e0b86ee45dfa6b3e84bb145f53
BLAKE2b-256 d546f8ce8880ecd61d6ef50b6cefd4e04dc30273828beb7c7a6a2bbf1531067f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 12842ea5b01d569d546f14b5dfdcc33901e5d0c3b5df030b7753e1983f56f8d9
MD5 6fdaf6e84c06c730c8c6c92e5f7f3f0d
BLAKE2b-256 38537ed5012ed9298224a99e5ae8dfe831fad15b51df36ac285d1b839a150b3d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c255b2b8c2012d8db50fac0d1716f1e164c9e5e1808af92127ed6f8b867fabb6
MD5 8ded97e964e6daf3cdf04bd7e3b4d5fd
BLAKE2b-256 e4ae33fa5c220ffd8c9ae1931aa12d4b946ab3ce660364b683742d607e022017

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f352cf85a88b8a5213b1e7f2dc9609c6a153f0f247609d14bcdb36ecf038a54b
MD5 0e0685253f5a58ca174ea9bff9f0f84b
BLAKE2b-256 5dfa9f15ecc0698521dfd63f960c023da7929d37997d9093a7b57278245cd68d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2f30b1120fda6b6a2bd9c981816090001361a0e13f990a1ed25333fc368713db
MD5 2a1dc169ef3792aa5d8184bafec55e99
BLAKE2b-256 adc31c90ba2bffef5395ac2d57740887fcaa55fe6679aaa5a572352d5bd73268

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 87d17e4f8723d1e4699ceee270d410b98732eef2aebc592506dd3ac08a67fe08
MD5 8bc8e2e63010940ff75016999aadb328
BLAKE2b-256 11cf9d765c892a9660666c3519dda553719b46367f5de8e10d2709d751d80ffb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b9ef443ff96596df1d24b5e6f3b47cb67d9d82270bf968bb91a9f7e42dbf8ac
MD5 4cceb58e467d1a2609f8fddca5693429
BLAKE2b-256 e4fb18f2272b5c2837a894a483d8f6c338fbc6ede29b9432e94fb191042426a8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eca70f4d885e8d37caf14de887f36773e94764085cc6c589cb6bfdeaea5da3c4
MD5 6b00ece4cc4a58da27f1d12f69b3fafd
BLAKE2b-256 a886e6ccd85a3b6db61cba7e8dd211fa919e393b4c1720dff2ee9493c7d4b6cc

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 68962f53085e0f2dc099e0d7d7377bd50e177a308808d9c6319cf645f82f3d72
MD5 beb3afc02e39ca30b414d908c90a1e5b
BLAKE2b-256 0843ac755afca28d180936aa494ab327d44e95210ed10fc2359c76a02efd55e3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5b82a3b5d542855c6c74c30d8d2d99b5a9c1a42765d713b8526b3e8527f98ae0
MD5 1e80808b61bb82ba8e371cd9abde64b8
BLAKE2b-256 48a0d51cb841f902574783bf23d41ed7726d07d81090363ead7e9617dcfd24ec

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 7026da2fc7abbbe73d9b2ae6832074c86b5d90159de5235c44189cef4d24f3c1
MD5 7be2bfd231e0ad98d9b2c513abc22012
BLAKE2b-256 c8ed2917dec8f905e346d14385516a2af791bd50eee772b5a2c2c200c033ab17

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 00fc3339ef87460e5510c229caaa89221a56c3d3c98c9a8ae316ce5a9b915966
MD5 4ded49188661adcc5970e0135d8185c2
BLAKE2b-256 e2578ce4e9806c21718b1012216adebed5232d2451c637de387e7b61567d1a2d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 88d1a162ba0744c36c11843456ab07a6eb785ec533611ab856461bba9953fc35
MD5 8b959bc979aa11f0a38ef53586a6e75e
BLAKE2b-256 8145092b1078686b94e3fca2c9a5022e5038c30cd390df8758b8e375b4ab6d7a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5875795080a167c060309392fa31327c753f7dbeffbbe453b6210b99bf2d7247
MD5 6d860e657acc1b698a44a23ab51d0d92
BLAKE2b-256 d49af6b0f5fc7845d6ebbe90a72f24697509392a378067f76e180535c7bcead1

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ae5861476556d3735566c1f4fd02ccd2454a9db05959599de5c74da46b3796e
MD5 c41ace31391f42958d6f5d035fb4ba7a
BLAKE2b-256 e124a10c87525c55b1fc7589151804ea8c2bc7a26ff5125897a4357d07e0aa71

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 49963b9e035321203d04bfcafcd518d8ff28ded510636aa38e6d1ae657b00192
MD5 132dbbc67404d6e6f25bfbd57c74e0b2
BLAKE2b-256 2e9cdf3102035982cfe588c93f4da20b5febfd76b90bb48ef55475cc0aa4c6ef

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 182792f1381d43c57dce6e3a2a694a66eae0f6ba82329e88f2254071c0b83761
MD5 4cd7fe627d3bf37d724966e4d88820a9
BLAKE2b-256 fa9f2c2f0eaa97e8d5fc61c486530c5b0af5d23e80371bcae75650266d0dbb87

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a692884ef0132f54bb8e562c2b39ade1dbb1252b126c4373f31fbddc99ae2a84
MD5 7d818048b472ddefee3f36f2ff702dae
BLAKE2b-256 46c36d743c515dc808534ab4735cf4fd7895fddebe54e4c8a172e713535da06b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 c9ea4a37e6d02d3a5ca6430ac52b8c4a998ab0170ab7e04738983aa16aa043d4
MD5 5ccf8aa9ffc9a8b7bb693cde7c4b5a3c
BLAKE2b-256 10c666822398366d103379e073447645d866c898fc7687670bad38f17968a7dd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1d5c5cba6183c4329d7ab941ca7dcafeab8ac60d91622802792396eeb8848b6d
MD5 69594b4680c4e493d5eabc0d893ba0b8
BLAKE2b-256 74ec3324696502a23cca46bf8e1bb108624b5a9d795ca2a46568162e3a6a8b7a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f104ba356a9bf5a6fb71b940ec887d82ff5a04741ee9b83a0d27c72df8b99ca7
MD5 61a892c1e61fc4e3f2d0850f4a0a0cb3
BLAKE2b-256 68cc2e4aa63c0136a580a445df0525438e95d99e87a7ed62d950d50544e87b47

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f123ad0e8bc582d961ade318d98e440134a9349749053b00983554a85df95d50
MD5 88e1aea6c857ab81736a4dda336516a4
BLAKE2b-256 59142a0331fbd2c83fb9320ec50f1b7063c2da974ae4c5711f61bb855c9bea34

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4b031eec40e2d93923a71b7de69437fa8e0689a51b4e66373e57825edca39c4a
MD5 b37974c5f9b152d568dae6e9da877b44
BLAKE2b-256 c487f755ca95ddc5a6b0ce5673b6aad629f78a8bd5fb165f7eb101cc821324de

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2c960e431fbe02f23c3b4e35d3789dff1ef4adfcab266927fe4f96b57de5a7aa
MD5 ffcd12a0d77a6f144cda15d66bc35d45
BLAKE2b-256 4a1d839c082452c564bfe705ed8cb092ef6bb35a82cc2a36baf5f01c3d80ea9f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 175248e601997218c352b9c7d79797313b40a78574809b778be5fbaddffd199b
MD5 7821e25b78273e0423c9b409ed73f875
BLAKE2b-256 44b3824bfab3cfb21bac0508421fec63bc42ce05ee4d28fce9f2de36428130ba

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6517ee58ef6d5c00691e72735399181d5ef5fd870f8e13458631a5373be4fa4b
MD5 f9a62209e228372ef8cdff9d9c03a80f
BLAKE2b-256 f7b8c6ba8c6df3c4cae38a4675dbbc1837610733ebfa7920f2be27e0198cbfe9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 e75f5669c04aa27ecbc6d35324fc3840c3267eed0af04177d62ffe461c8d6a29
MD5 79b55baf4e044c24e7f712972a4b575a
BLAKE2b-256 2ba85a03103cd3fdffbf05e0ad2ddeae490b8000d44318d7fb3636cd173cdc80

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ac776bc81c8368e36fbbaf3bee6890041472d47db75fa61702367e3072b0015d
MD5 e62c873c396781c072de3c5359186cac
BLAKE2b-256 4d3a336ab45d5037b82cb73ddfd763490e081b32c67af52fa0631cad3866e693

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d7ee8fdfa910cb84b5e1fca535381e5ae32431314f243fb46ccc715fc785677a
MD5 5bb941fb5f4ca17a84ba5e192cac1d3f
BLAKE2b-256 a3ccb3d19a6f5add373f5aeff6aab13cb2faed151141ad216999a5e9131178d2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 376a387ef322ec6f48474cbaf7a2ccf4c6ceddc7d2eeb34a80d1b4cc80b6c190
MD5 2a2d945ac11720bfd4fd59b128abefd9
BLAKE2b-256 e04565c569f00aed438d26a7932b87797a518ac2cff3aaaa9b781174fddeab94

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f440ad893a5ba72377050cb44435e9da595a0817eab03e25b369693e7c692d4e
MD5 fd6335121334785ed0beb14a7aaefe4f
BLAKE2b-256 9a214c082570c08815f169743c567a096949280419550ce6325a571e5e9b5512

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9eae433c7995e7b83e0207546bf87624def57193c7d2cf89c63b82040326acbf
MD5 0e425b4f4d03a1a9781a52b1fcae2fd9
BLAKE2b-256 ae1aab14fc0f415d8edcfe06e320c22fcbd3a55f057669c78aefdea862912a75

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eb43d8873d63e759e025a8758507ba12eec6d7163a34dbc384f82fad7309e427
MD5 0a6e3ea9be11513be153465ae6932556
BLAKE2b-256 46569b03a7082245041d8ce2581ffbdea1dffd36a5ed10b68d2312c58cf8c8a3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 bacb1e43f5f7823752982120f995d901892cd277e15955f409223374c6f52bc4
MD5 c9f8bb96ff84084724abed60eefa0cf3
BLAKE2b-256 ff85c740c3cef237b44f817dc519a6966df0c60b7a28dd462e49a4093c4f43f0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 6bb9d148a3a6d3f72c9170715b3d9eb598db32673befdf68eb1c3a95f4922c54
MD5 4b7fe5b42b53a8309795b9fbed81f675
BLAKE2b-256 0f716b96c239bd497a1739706f3f4934a2dabb27b8f47866b402c01a3b6085d2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 391e2ef87dfb590e36945905f312bf5aee1d0ec3d23c6bf5bbee6f775b98c9b0
MD5 7a2ae8236256f58574a5def69d92d0f2
BLAKE2b-256 551bf3f980483e03028f9755de6a12f08557833fedd064101cad968e96cf295f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6fab7d3a0f9b16b65c985d3a35319e16e7dc34a1a0dfb51a83396c95dd588652
MD5 ac5b107a82133486df7994589b3792d3
BLAKE2b-256 350e79221ce58f3d816e07e226d81f37de7f59bf26076a327e90e968978dfe7e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 72c3f192aac13d8740ce8b95b291450b0fa4c001db548ce5f218dcb02bbefaab
MD5 204117beb5fe854f956607be9ecddb28
BLAKE2b-256 ba836fe41a985d5b858b4478c581b9d7d08a433ff1faf958a49e88cd0f155c13

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3df5a174c2ca17e6bc481820ee3ffb99837f938c67ce29b0d8f895912a5d577e
MD5 cc9b2c1b306ffa39e2e13ee0b6b98d08
BLAKE2b-256 9966923f5e1c3201fc623c761c4874fee373f17d861ff1b4e5b5e3c308477336

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 326184e1792a750407807c9a669950d1212a6f06624688a5f96e1d106939a2d2
MD5 586c3a5d445ba949b0db2a3001013924
BLAKE2b-256 a0feae559864a76a1558c72a88831fd38256499033d468aeb302f02a6d2047d1

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 426f762416660c70299889d88e917ee217b1e15a4cd8f236b6166e92e92ef014
MD5 fb47182d9beb0ffd7f066693d27a4c4a
BLAKE2b-256 3fa5594797c741c69588bf350a146023d9dcee00a90ada14cefd70d5e9593895

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e585d34c96b1de3b2931acb6ae2d6044cdd3823f541c4364d05f1453b489cdc7
MD5 44a79dec1e7e94fa9aabec5658228fc3
BLAKE2b-256 afcd41a11771303d77f0ad1d125d30989749fc2f4fdf133ef0bcb99e47d5cc4b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 0c108c820b0edbc8e0e155404472c48b1053d33950a7806cde798ef915df5092
MD5 f37dcb652284aab5acdba6dd98a7b111
BLAKE2b-256 78d59a15c7f292ace9e8c886790a1f5bdd0116ba9fa1c93a4629b27e8e67e212

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bbf7eb3ea33f570afc5de1c8a29b885d1eb4546dfe1f9f36e3c4edb9b37459cd
MD5 bcab3a7a3a337e52edc4f00f6abdcd88
BLAKE2b-256 41d9c377e102691e7401b6e17b6b8f4eec321ae567d1b7fbea2074d458cf62e2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f7ec913915c3b529445ea7e2a4d09d9facf7037c3d219b43216a213829001c6
MD5 3dad5f56df8af1b705c2a055e92396e5
BLAKE2b-256 e1ff29c998ce0bc7a754950ead44f87c8bd9bbaf718bc416267fc971faabd065

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 07c7961f399099d6c5d91cddf6471c79dd20b0310b6f24ba2621c2a28a8cdad2
MD5 54c529bfd1ff50fb642b00104dbaee95
BLAKE2b-256 0541b04824ce7678d007ba3616b8848cf0369493788dfcc1f7e4ef2955c1222e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 669e46cfb96229be79cad4e753d5699d89dd5716f0e3c235c62efbdf0109996e
MD5 4b470d5c86624359f28adc3f3318dc52
BLAKE2b-256 c0c6d10a4becac59fe22964e7c4489633f0cb4e416438cba9dd978b662661453

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c0e0482181ff9c63e65fb17f595d2d182034916d571e6ff9eee3b39a803ba5e0
MD5 b8c384614395333c4aebb97b786c1ae0
BLAKE2b-256 df8c4b034b789d88dc16d1992dd75391a7f15eca737d7080670bb3d23c2b32cf

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a39f3e4d8ebda217db7e3cf63529f27737952400dd11116e54f24fd841c5f17a
MD5 80f43d398731a109a19d732c0aa925b5
BLAKE2b-256 b59e7eab28f227aafbde05e561c1f20bff66bc394703083d2448ec09572ca08b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3ffac9a6083787a704fa942c40309b55734e14d619e39f86fa2e70cd0b317e81
MD5 cfdf2a5abcddc2f57e71214bb52e46b7
BLAKE2b-256 e817a6f22d558a1494a2280a417d7414685afb473a90af360cd6642d2a6911eb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.3-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.3-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 74d8fe3c4dea2e0216bd9d178dc7e338a28f180a54d62cc488db615ed73d10e2
MD5 78869040e135f4c1d6ea15610e1ed4e2
BLAKE2b-256 2519e25a007977e5392e5a00adcfa2353e1578a57d449d383414418d0a19e7f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page