Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2023 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.9.4-pp39-pypy39_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.4-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.4-pp38-pypy38_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.4-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.4-pp37-pypy37_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.4-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.4-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pedalboard-0.9.4-cp312-cp312-musllinux_1_1_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.9.4-cp312-cp312-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.4-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.9.4-cp312-cp312-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pedalboard-0.9.4-cp312-cp312-macosx_10_13_universal2.whl (5.4 MB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.4-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.9.4-cp311-cp311-musllinux_1_1_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pedalboard-0.9.4-cp311-cp311-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pedalboard-0.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.4-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.9.4-cp311-cp311-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.9.4-cp311-cp311-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.4-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.9.4-cp310-cp310-musllinux_1_1_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.9.4-cp310-cp310-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.4-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.9.4-cp310-cp310-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.9.4-cp310-cp310-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.4-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.9.4-cp39-cp39-musllinux_1_1_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pedalboard-0.9.4-cp39-cp39-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pedalboard-0.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.4-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.9.4-cp39-cp39-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.9.4-cp39-cp39-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.4-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.9.4-cp38-cp38-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pedalboard-0.9.4-cp38-cp38-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pedalboard-0.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.4-cp38-cp38-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.9.4-cp38-cp38-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.9.4-cp38-cp38-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.4-cp37-cp37m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.9.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.4-cp37-cp37m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.9.4-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.9.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.4-cp36-cp36m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.9.4-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3922748af9e672a5f7d31e1de1930066aca20886d940d2ddf22acbf91bfa0efc
MD5 aa5bd8f4f7f1ddaa12d39f8c4be62f35
BLAKE2b-256 16c0b6404c0b42a5340ae4e90153226a377cb3cd3d4c83c157f345a7ab286c4c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94659a62bc9bbbbc66beea17d17981c20e806f007be3ad27a2456dea706b1f70
MD5 f23500b11d50319333786cff85228526
BLAKE2b-256 72b8c9c9db9e072e06ce88d84844071658a17f78a584fd80e871159857094696

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5632064c1da4b4606713943ae393dc4be25bdce32af73af12cc4485a9e223d5b
MD5 616fb844c6252f2b182598b210c20c35
BLAKE2b-256 84f113998263932cd89f3c85d470ba4015858c5922bd6a24e606e10f50fb68c5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2cb0daef9f89f19c590109cda2d95e96092693ba174f15ca251735558db76705
MD5 10fb3b28c45c0ee0be9ed996cfe6c6ec
BLAKE2b-256 97e7379f0b3d9decc795125b3dd8a0e4968baca53bd3f483be2ca27be21922c8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0cc74eb3583700a3577c409141517fefafe05dfdccb44fc0157dc8a5cd54f470
MD5 8fdad977879403d5893ed21b741fa030
BLAKE2b-256 383ccd09b310ba686565f5b6cabfc89ac434e53f01dbb0e997f7c9663d55ace6

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f027d425c50601c79f8f2028497a7c8748cb1e0c555554158c2ec868f599d1f9
MD5 e304de8e351b9ac027048832ef6481cd
BLAKE2b-256 f3d112a3b111ddef9288efc1476ee7839953636248b25e1bac37e147aaa44c1c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8ec16ee463733396d41f46f14ad54250ced56a98aad65a9a997e19839b55c350
MD5 99465595d15825430510cade0cf27a19
BLAKE2b-256 8e2116600bb02c89f99d50bbfaf451f168b71e5956e119ab4a8447bbb26eab98

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b64cf840a082af3c3d3d7510604fe20b6906f75a77bd2de2d37c22bb63d6210c
MD5 8b0978ac8285fd3181ce7cfbdc2b250e
BLAKE2b-256 7386407ea49052f2ca48a05e22b2f3e320de953a93efb5c54ba279a0d0257e0f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 8576d488e23168ef5f67e6ae0bbe937947ee56fbb91e8b0839abf8f0093f9269
MD5 00a9df5f8f6099830e91ff59150f0626
BLAKE2b-256 10ede9630c83daa9f795b42b9f37bcdbb4844321ab50006e7ba28759e6c903cf

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5595425a234340a59a84f4cb2d95c9fa23f5bd6f108649ab0851f0f0c35c4dfc
MD5 94d8f0270af27bf47daf7fb81002d7e0
BLAKE2b-256 5ea294ca68fb8fbdb09ad20ad08144776eff5ad125f18c96603ed8b68704b7f8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 50b7b0326e8d97bf213229b2f5098dfabcfb29ea850176ec0b14054c67fd1795
MD5 c29e940a2d0ab43709883842742a5f87
BLAKE2b-256 5c905bae39bdfc5648191f8a4c97a378fa982e000d1538c9b2cce63d096dac45

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 680f2de2cd20249a0a7aee367bdb3a2ba95870bab3c228cfa9553aa2d5606dec
MD5 4898cd448fd94904a148e5041b8e2edd
BLAKE2b-256 93b76550a02defd8b99e047d90727d1842e3754c56789ee8cf7397ddca5160eb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 189e77317908c06564b1b5b1aedc9215d4a1061d48ae6d6d38b4a8bf4666f896
MD5 6e56e9c96aef2b2e687fb37f0d0b2966
BLAKE2b-256 86a230eec036aa8656e1f1d8c6a8f070c98072e99df9c28969f4e9ce992b6374

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9de32fb9cac46e82632c2d5192a3045f8d41fdbd32084a7e5b577d86c9932a9b
MD5 903d9320f70edd9694135d8b0632a10a
BLAKE2b-256 c15b3a95f1f941bde7f04777709ae557bf7f0a71e9998d4ac192d406cbd09f2a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e7cd936ad59f8e0096eab3ee9b0a800e218ec9405ddb9ee072538206246d2924
MD5 26f954c561c7c59da0860c60284a5b88
BLAKE2b-256 b021fedd6df299177a14f8f5c0f9d6dffd27612e8067c2dd831002a285f47f2a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c07b15025d83479da7b77decb166d411219f012ff8a70e6520f1e88d06db9507
MD5 ced4e0ac996cd0429f440ea1e327ce29
BLAKE2b-256 ba63511f1498be3d87346c7e8df28841b7433eb65a2d64904eefc532161ad988

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4e6c5667c03812637bbfa035cbf02f9b9c87b4e097d8b51e0cad313c77cafcef
MD5 91ad692c2624e730dfd64a6af0402809
BLAKE2b-256 8b059920e4d520211854ddd89d186914eadf3f54624261bffdb705a10f85fdde

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8e5c1572373964c7ee11e755ac7c0e888924ee324cda117e5264575b5daa9850
MD5 dc3e3c2c51983cffd7197f886ccfdb56
BLAKE2b-256 9aeda7fb07759763a07eff6d1fe3696aeeace3dabb783323fac0e0cf934d24b4

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 73d84af122f49d78bdacb26aedd0153e5e18873d9384690be5b81de0e8849b67
MD5 e9c5c1735e6b96294a021ad655e74121
BLAKE2b-256 4c1b113062ea02633e44bd340632809525c56d372ef856746809845903ce02fd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 2b586b8461dcffa94536940f55b1cea4032fb6abc819ad9406a4b44dc689a52a
MD5 cb652e53f9b70b6fadc9ce496a19eef9
BLAKE2b-256 d61b0392c5077e5685d0968850be1d8b21cf4da6b50dcf0b798d1aca339a98be

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b19c435219c9b17214aa4bc2195426b9ad84d511c917f1b940f195fef664b57a
MD5 97400f39416b163b15e1b9f3ae263383
BLAKE2b-256 b21460872f5d330e1dc3ebe657f8e628a96e0825be219c4b44966ec933afdde8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4b7a4bed6774123211d85b67f899f5ea020c4d919a5ab9e2c7dde5f11e98d85b
MD5 d87a9fdbd4299b0495a2d52a3fdec17f
BLAKE2b-256 50da8243dc527989f37e182b6068e0f6003c233779f67bffd2f4e3ea36468928

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 52584bf30e86a7404a0291ddd39f5e4b86623c2ca66c461f28af46c47bf94d40
MD5 543e6a6ae2909e22b34b9f84609c597e
BLAKE2b-256 fbe231b5be240a555de44439d4091d4d972f0b98bfd1c42d1fade2e7ab1270c6

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 143d5223a38709842a3d44f17bf89511a8583835fb3c46fa673d1aa94fc1e5b8
MD5 8403ef14c1e35e6b146bb1b7ba594d4c
BLAKE2b-256 46f78ab76b1dec4b63bad0f0c5390e7e373bd93ffde5ba049d78a5d0e17ac12f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 345c2f174871b6e9b5485f59482e79ef75de96371368986a7af4fd70e58e6339
MD5 7299a6e4c9705fef74c878f0e66c296e
BLAKE2b-256 865e41ffd473b964b7c1a7f73bafb70ccd034fc59bb024cc6f51d15eb37e17d8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2e955ce38917c876cb1370c210a6396c49ec0c7cd3118fe1d877ad27509d6bd6
MD5 092bc0e287fc15463cf4ab6943bbc770
BLAKE2b-256 6ebb07e309c3a3d6cf2609a9e02e13417973e79ca4237d5b6a1f8a1bee610755

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 143443b831df16ed6f8f6f12f5774c7d7b268364768a7d23936500e160615d3f
MD5 cdcda4f049dee6ebe59b7ebfed53df9a
BLAKE2b-256 76284612add41351feee121119150f3f141474a33671d726fd67d74e83913c9a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 4458c89b6126a8d4ce326fb3e0daa9c36a73029620338b97046c85706772eb57
MD5 f79f4795680f5c983bdc7e78a1445503
BLAKE2b-256 5f382b5a0030d333d9845eaa5766eea089daebc83fd9a47f86b8511dcd92886a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a527b8516de4ef83cd501e7c3eceb245d5f309228b9bd7bf572419e21523a6c3
MD5 455dc0eb9f97ee2fc8837f3d1720b0bc
BLAKE2b-256 7a8f04f017b832369716a6d6dee65c7029d99c6eba0860d4d74d395bf5a19658

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 36d9d3c2929b901a12dafc48f161cd3af6e34fbbc894125d10e3c6b2d62b01ee
MD5 3fa8d8b928e6a30f2d4ea89a0d40c445
BLAKE2b-256 110b539aad125d25709a9492dc19d02363b5554314f6f9cffe904b81223b34e0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0829112a51a991ca97c5b13385dc320c4d4df95fb9c36797d895fc6df25e6f13
MD5 c711955db88a4c1e845b042d7b42871d
BLAKE2b-256 9d1e4239f7d21f7acc86348e380e8f67c9d3d48b2b03d0a5e643dd58be35041d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d46ef2223515580631e52efa014bb997719e4a6721fd76e8b5a3b2a472716a72
MD5 ed0a935d663211c31236421aa221e194
BLAKE2b-256 2404a56391a8f72f838b691bf39583f8bf4639342468ff6c9525394fc8eeaccf

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1c8a2888066a2ce7d7648ed62ed3e24097f4f545c9f4f032603c51e32ffca5f1
MD5 9c38700e8338729a84c578273ebba9e3
BLAKE2b-256 d21c85c957e92daf07ccd3cf55616bcf5da9c9498a7c75ef623066b1b3470678

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7c25cbcce79d527a61709c408dfedbe9e40cb48449fb02c679e953740ecbc18c
MD5 653bf475a759ddbf1e51d6ec38ed5130
BLAKE2b-256 053fa9f8c7a5238409025641b5387f317dfde4b6fed2a01010ff1c5731cd8519

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 282562ea9372022c91deb315c99577e64d46c0f67cbf0b6e04bc0da8c007f626
MD5 d04013d7689562c6e7f0daea0a815679
BLAKE2b-256 32af6b4d2b735d9052a89b11bd1895cace9a179a4882fc32bd60dc7dba0e2aa3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 70087dc8d3f0414db170ece6fdfb060898c66a20a999fb43e7a7f2c36ef07dbb
MD5 56853e441c1e93d6b1e7ceae2c34198a
BLAKE2b-256 fcecb4ed393a5666563a4ac679227efc3cab103c8c0843ab0d3313986d53423e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 df0c126cd7adb1126c2047254a329af558f22aa6a59ef4b6cdc6c6aa1751a71e
MD5 64c67005062401f16606395091a5b483
BLAKE2b-256 67308caafe9fe41a7fd0d748b3e502e50f2f477c43e97d1f46c900480d08c906

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d7e54a08a8f0fffb0a1e1ba97565b426f3dbb2e194a4ff49c55521faa9007c58
MD5 b51809fd4994dfd4900544903fe9fb71
BLAKE2b-256 0a698c2fd1124644106607e37b75c9a7aed85e2d8623729f7a337470eb8d5757

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 6313d00cfa488b918c5b307c182cd42fddd2e1fc3b882e10654b3776852d9e5b
MD5 954e366c9b514d0835f03fb9bcde2e08
BLAKE2b-256 41d7552c4d355ab2bfc2d671290ff5eb4b2f3f21ce7747a22945a7d62f787ec8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e28687cd406ba981a0fdbeb1a3eab561494f98b25e385b88cd678c470e54c86
MD5 30b06221c5183239c3b7b49bf8a33a0a
BLAKE2b-256 f1607b61d3df498c611f3b2cfb6447f36c4e7a1ce6bc00d669f07c8acdfd0c7c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ff1aa326a57bdb34475b6bf514be4cd83b3d0d201eaaf82d462e3216c5647a23
MD5 89681c6fed9ab337ceddba10805a8c21
BLAKE2b-256 518c3860664eaa542ac1157b0d33359b128312bc42596283ec970b281acf4c76

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3b221ab80d2699dd2ade98d6347f01e9f77156fadbe50af61f38b9afaa84a1bb
MD5 b59fe72d0f478f36c41e5ba90cfeaca9
BLAKE2b-256 cf6bc3dc164da9211e291ec82fb539d06fed799e084a831117be2264cd899ba8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a9774d12b8966c3330e28c9946b5112fe128e6d8678b98b756311c854c871e8a
MD5 334b94e9eee268fa25c838b454a76a32
BLAKE2b-256 2301fa0600fc84609c2956b870c1828e1abc75a347fa67093db5e329eb22d97a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 d41862325734ec2130c79c6bef56561f75e11fecec87de82c02f489e2a64b293
MD5 542aeaf1ef259c5426cd86caccf0b8a3
BLAKE2b-256 d9ce9d16c9457a00c8fea1f305d6da652949258747b66004e7705267ca0d6ca6

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8a3486fced8bc142bdb1033dcc8c32981b4d82ab7a57f0b9da0e70bf2938e7a3
MD5 5bd0fc4f0cdbddbb4d99a975aff5a67e
BLAKE2b-256 20549ec6d15de6e8b7692851f9bab62245654537489073d163b5cba1ff1507d2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 567639eeab124fe0807a246018773c4256061f9eb782706269b1bcbb83e3c8a9
MD5 e1d61604292a1cb79556ef0a080da24a
BLAKE2b-256 516b7733f305a2be6193ff4c68567db2d020d8b3f1cbd6b9bbdd3dead9659a7c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 86bc0cd8c59259b48d85666f5fa6e9c95fe8572a16482ab997541bd55dee249c
MD5 e191b7177b7314b7f98e146a2fa30024
BLAKE2b-256 8c08b1d73597e9f2e9bd539eea9abc3a8aae3a39cffed93456138308b0434330

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5da6efdbf655c348f0434a38538abb0006f4b6dd8e24ee154bf79baa7960b32
MD5 c06648f66ca89609be40b52eeb44cbc5
BLAKE2b-256 d681bd47d5f3691db31ae017a0c141266f4fa2885cf90b07f76fc9e8846dbcdd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d8ce6184536ab1084d7e4835074ebdf2ef4c1cde8d5e912fb41ef221992b9ad7
MD5 d0b4f308ad2ab9a48953903f2b553c56
BLAKE2b-256 af593aa213e0c4fcfebaf171698cee7227dd235248c3edc5734a0bcd628e4d83

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 70c3fda1b5ba00690ad7fd12ff4450e3b705706b8cb93b037e8fac8beb312c1e
MD5 46264b81280f2cbc164025372588553c
BLAKE2b-256 ad0e8e0e335d0d5ea06f1ea2e3f4b5cf2fd5574629892177cce0b809c81863b4

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d235b80dcea234355d88de59083dd40ed0cb2542bd34b3ac70ed3f89c66c5ede
MD5 9116778f6864c5b9326b1d72229efa0b
BLAKE2b-256 b776f57859a834a77faacac43cf33cf7369e61727ac5e293a6157f633dd7ecc8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 ac9e16c087afecd9f711357c25854f4565e8dfd2a44c4806215cf89fea53520c
MD5 56cc362685c2fb78747a8c08524603e2
BLAKE2b-256 cecf0c051e250df813de3dac3680689ed242e95df528ddd190e69a5366272efe

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 31f9d260716c1fe369cf2f875311857f17c944fd0d24efb2e23ff85f3370f888
MD5 e101912acfad88be1dced96420bb0ad6
BLAKE2b-256 0b9fdc16a881ba5bbac0c043d6d70da829c1b7521178288d3fc18fc857b87818

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 77e417b19621742ecf52f2c550bd216ff301e879d9cc1ec1d94c4a40ae4361c3
MD5 d8fe5d35f62529c5efb44d17057cbe9d
BLAKE2b-256 92845222cac864ce3ba99f20b0f2d24ee3f38c0a7b627e8b9abbf00834b69189

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a17ca3a0e13b6eb643560101443b8b840267a15fc7ede7e580a89f20a9397035
MD5 6e5c545b7be6722da383d55290477b5e
BLAKE2b-256 e4ba19c226d1483c06e15b2b4fb93029b4e1a52b7522c0bfc863e2ce2fe95241

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8c050143831a334cd5fd11adcbe13da739d84e8ab6fd23e8502b9102658f7835
MD5 2aca86a0fb76cf81ecf05d5578a5458e
BLAKE2b-256 a5baef50224dcfa624de38fd13b88d67d74a7ccc3ede03264f6f7db5cb7617b9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e445f5d2ec94c2502425ee732b68522936073157f7916d3bb560ae43141e04c2
MD5 30213d0a7ed113e84152340b9a19fba8
BLAKE2b-256 f94d715d5cc62e5e63bb01d7f66fa78f9861f79b364c5a5bc69fd8aa4faed2a3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f12eb75b0658aced769121924a23f463e217786067826cc84d1650e87fb313c3
MD5 7e793fbe1d47edcdbc7c49082d961d21
BLAKE2b-256 8190540654dc03fe875de9a79b970f9ab0e0bc0c10ad69b93d0002c8d458fa53

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b0bf14eb0ba44a1ca61e3350f24a1369669a5213e9c375473b6ba38abac1c6e0
MD5 7237ad7e0a5a23bf0ead6295cdf38cfc
BLAKE2b-256 573cc27e091c2ff8bff40e3d66a0ea90fcd3a6205024db228ba98e597eb63097

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.4-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.4-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 01e36c2332e0c9bead0ca78ec1955fb6951ed60d8edbdbe1ad02a2c78e1a7bd2
MD5 a3a2c7ceeaae480e9c37f40b66c73fcc
BLAKE2b-256 3c82b275dceaf5b8e7c7f7bc29d7646127177ef29c855366bb71ac32f1407d8a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page