Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2023 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.9.5-pp39-pypy39_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.5-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.5-pp38-pypy38_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.5-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.5-pp37-pypy37_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.5-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.5-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pedalboard-0.9.5-cp312-cp312-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.9.5-cp312-cp312-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.9.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.5-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.9.5-cp312-cp312-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pedalboard-0.9.5-cp312-cp312-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.5-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.9.5-cp311-cp311-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pedalboard-0.9.5-cp311-cp311-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pedalboard-0.9.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.5-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.9.5-cp311-cp311-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.9.5-cp311-cp311-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.5-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.9.5-cp310-cp310-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.9.5-cp310-cp310-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.9.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.5-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.9.5-cp310-cp310-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.9.5-cp310-cp310-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.5-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.9.5-cp39-cp39-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pedalboard-0.9.5-cp39-cp39-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pedalboard-0.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.5-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.9.5-cp39-cp39-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.9.5-cp39-cp39-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.5-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.9.5-cp38-cp38-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pedalboard-0.9.5-cp38-cp38-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pedalboard-0.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.5-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.9.5-cp38-cp38-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.9.5-cp38-cp38-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.5-cp37-cp37m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.9.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.5-cp37-cp37m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.9.5-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.9.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.5-cp36-cp36m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.9.5-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 61839461aaf07e497f7106ea9d7d71077c275e429d9fa4f2872f9e0e02645e8e
MD5 e036a6131fc2d26e4e5720043c76aa42
BLAKE2b-256 f1d0dd08861ac1f785b2b57cadf7393a369686b70fe8dec46032c1cfca52c7c4

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f816054e04e08e804227195ec919e96893ce05bfe98bc8923ddc4983d68c08d1
MD5 d591423fe43a2d8ba91820c56b5c09e2
BLAKE2b-256 1220d0712e85dc9a9d02683ee71aa1ecd2d964197b8a77d282fbb74cc312d14f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 acf1c6c873b55f867f6a2133f09c5f75541c4bec3d638bae006246353164ef2e
MD5 b4f8eb083add0be73cbc73d36b6bc083
BLAKE2b-256 1ad547840417cae27276da4a55dc9e7d758844e53996d76453c7b0af08a8f6c1

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2521dd85b0e0a431e4f2a709faf8a04d770127bc5f7840234e26031e9210abf4
MD5 b76644f8e873e018cf3695f89bf2f097
BLAKE2b-256 6a0b003debdef8a614e2fdae8174a1544d9e4e27ab2cae2e8f2f33cdbfc9b6af

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1a63168c3b26e526c5e8217480a53666f5fe53fcaab2ac989e6f901b17870bae
MD5 b1330e5bb2bc63efdfe8035f6dc77f6d
BLAKE2b-256 c47b553f91d0a9d4d63fbbf9c5b580566bcfc1c9eee9bbd84191f9018ea1f94d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e856654c866fa9ec89bd99e6b1e42c120a6bf3a5ef04b2d0b1dbe592271b8796
MD5 d0d2a652023fb86c6c35241a45068c91
BLAKE2b-256 d47a85cbc7d380689f0aa8edcf413bcb26084caec7d6c0ebe4f811bbc03138a7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 11b07a63a72ffebe606772ec8d40ccd95a23fbffa9b27ed80e53576f6256d203
MD5 ba06b568cef546571ed2c10d48b7a8cf
BLAKE2b-256 37f0d5262ee45f51d4686c3c0606fae8e5b32738ff345cbc9e70a96132d2c63a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 633a286ac16ebc655bf24a0a3d7afab80cb43f7c88a2753025b22cca461ac195
MD5 5c629142a5f8f8736c62cbdefe0fdb57
BLAKE2b-256 f1d7cf9cd88374240638fa448c05bb5a433f47828f4edba3cdc9ae79d8fc5882

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e4b7a5ea5989fd666504c99984f0e4580c922faaab9f4bcf7539b0d8b1a1393d
MD5 7b962092de2561b10f89e8f5aa2f2fca
BLAKE2b-256 d2f5c643e561b76b8dde80ab498f47d93d9cf4140eeabac277475c3d2c340576

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d04bdd151f61c1c9326bf1df73f3a8f384e280b36b9bfda4b8f30c58ad725612
MD5 11acab5c0533bc92647700715f51aa80
BLAKE2b-256 6c4e48c58697ce656c29a7f7c38be6e83776f44e481c0fb600ec3c4efea91c11

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8a314d8b6be72893d7309a830ba844716a35b13e278ffb3cad985aef5f0848fe
MD5 e95119809fa2479e247d88a0db4d1a64
BLAKE2b-256 5cb022f02756c4cb3a187e3e8db80e8f9ab458b31ffc6c3f4a0e757a7842d242

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 303b3764c2e583c3d2c5eb35f1f6ee21c73497f5c286ffd9bf30c393c6412309
MD5 e7e40a8fbaa00492069db98c77dae7a2
BLAKE2b-256 1b3b662ff150cc0579679e8170bc68b7e2846804501e6ef5e7a890c528a11b7f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f45820b8120efb82b47e77366e7a3116807512873b132a57f7c040f2b42cccc4
MD5 efd290490a701f6cf352a0cb0f0e44f1
BLAKE2b-256 4d38e447e3c9f29075ab3bc1b3eadadc907a0797fb160e635db167d7aaceb208

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c8eed2a311bb43473e24bf72081c2ffd9fe2c29e044da1796f2953cd175d90fa
MD5 ee07c02c3c4393697c5d0d8206aaeef0
BLAKE2b-256 42cfe9163632cbbd57611ca6d5f119453837446a2df85dd8c3c01fac1cec945e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7b2a091f8863715ca18be129c0f55b3501d05bdb39cec0f638fa221dd6adcf9e
MD5 0803ddc5f29515af09df04edea25860d
BLAKE2b-256 cc4388db581d5932a000c07841773738b46b061946ad089132afc9273ce614a3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5ba197513f2bcfdf7e5abddf3bd96bf5518fc11cf9e4df420a22506603deb24
MD5 f497b3699dccf259ff7384896cb3097b
BLAKE2b-256 2ac599df4bc3a1e6f818dd7736078f6c9aea74ffaa8c26548f8bd215d864350a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e545f959adda2bb4854844fd7d857343071e63195eb696afaf03e290ecca699f
MD5 b064e11f3d8aeafd46df2bbb1f6cd1d9
BLAKE2b-256 a340955c6c09a4361d58eff179d32cdf365e728f0cf491ea07c13f604a3b49b5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a112a12cd2a951495bf0cfe086227a8f7f9b7e458c996b21e1ae8f55ce0fee7f
MD5 a6143d5df6dea719970191e632134a2e
BLAKE2b-256 613ff3cb395ff68a3378fbbda47d6a3b9ff158e3b7f507cb74f8b41522f2a58c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6f4188e17cde95544ab1b9fdc1398666e46fea6ea9f8145b75f6d8a82595cfda
MD5 46a5660f232b31df22ef01434979c470
BLAKE2b-256 5f463ad520ef141488a83e2892052d94d99508dcc2a2fa4bf8234c921890361d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 cbeb0dc4f199b6501e5bb149baff8643b5e980cadf02ecf5680c664410677e87
MD5 b6ae39a7fc985dd48e1c10172bdcae5f
BLAKE2b-256 e18965e492aef940eb7a1d6285f88f15f26d26a0d29d6b9afa926e7911da6a3f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 00ed0ba95841ce73e24b79801f3aedb24df5b76482090a036125515fd5063fdc
MD5 cb5fd4b78fd7cc2add43892e0b276810
BLAKE2b-256 7d3b9590a1cc8dc71409bb3173de9436a020a4b339fa3e561472a4d509011b9e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1457a25e0eeab932acc0c93f263a654ec3a3ae127558c99cd437d0f779fbfffe
MD5 4cb5de28b04adbbee2a9cfb5d8138519
BLAKE2b-256 ebbe2ee7c5110ea51ac28c489ee331afde8ec4fa84f898c4a563554f4640964b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 dd46462bc0b24e8e586b58614c00cd56517ff2edfd3637c41dc0372a81613d6d
MD5 6fee01b32866667315937b85e618922c
BLAKE2b-256 fac790ef7abf79fa58e56836e7e58ff8852dd87dc79932e293a2e104c895003b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a25e79743dd956eaea7431a2853e54c931f1c27875ea27a5c88c594055c9ad77
MD5 cef3429fe03128bfdb4623d8fbc4ea19
BLAKE2b-256 9944326141f5e690955175848cf1689d9e0fab8350eab8b61fb6961f819f9ec3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ff73dc4d9ee4868f82d5fd159f43b0ffa872fcf6e8863312d57c20e690c26431
MD5 1047f26daf8a46c490a873335514779c
BLAKE2b-256 27da1b91c6ce01c5b274dd0eb774931fa24f6ae2054e90f7b255ad04dcbd076e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a32a8e71934b1e65b23a6fb89c439da9c1851e2e2125cb4c4cd017274eb263fa
MD5 acce049ece68ee5feb6602adf1e52d59
BLAKE2b-256 d667347753d6c77db422f4bf574d76349c735f55c90129a4ec0e091da1b5062e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a9eac91dfd25fca8e4918083a3258dd1d694e2c2d5e283c244b76ebdadc9cec7
MD5 8c6decc8c742affb79c3c293c7650ad6
BLAKE2b-256 739dfa739b3e517ae2f784de449cbdadf26d0afa14bf3ca29798901ede88a960

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 c4f74ee8110ffd2f7696497414a4b944f818e5ed080686a6e470dba4fab1632f
MD5 7056920d4786c7d7a91e96939779b44f
BLAKE2b-256 cd13f653400704a331ee5b799578a76635ec8c54dfde8b9433a7649ebec2820c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 45687918ae86eae2442a5f55d201c59aa956408530d9b6d1c88a45128aec3afa
MD5 e4fc800d4aeb45810887e68e766333cb
BLAKE2b-256 c31f8473f13fc633c773d55290889c063998c1cb13c662d08237e2d3905fdb54

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 50f8bec7ba0bb9a38f7c3bfc32f0c2b679b23969ae78a144dd2ebae95beacb30
MD5 0dcebaf0f85b81a8f17b17ec1acb4627
BLAKE2b-256 2edfab7af17d4ca6505f50f92212497ad77e258d64572995d4178cd21d0b59d9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bc61d1984e323957aff4e12f89f97dfdfc127a9f72e7fef729d07a9edf508960
MD5 6c85a2c773512709e50a46024ee461ca
BLAKE2b-256 aeb33c49ec888d3e988bf2f8eca247184d2fe362a204a08a5961a7b9824a8c9d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7290a970a7cadeaef13984c546e45401f7eeb6b25382c48fd7acfb3dda4bbe17
MD5 9f59ad2e36a85a3ef07b29ac6e040eb4
BLAKE2b-256 c44989651c0946d75fd5ca007c5616a7c1e03ec1cd3d72fcdc0734bc17440a21

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3c4364483b77d6350c7ff45d1eb9bddf1dc88a753aad5e8660893afdfe3f2297
MD5 864c587e8c3ac451fb0d044b1ccc49d7
BLAKE2b-256 b0e496b60bd8c74260d04a1b9f47cca3cf36701229306816f6a4d99b9406f97e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1f9db28b8a5dd45f94a41fb4bf7d87db58f8ea4f52ea776f45a53fefd6c2f4d6
MD5 1fa017418e9b65a2327883c4512630f5
BLAKE2b-256 6a66e80d092c3b65bddf1c707bd2b7cab87a43f7f26085b664102c992e02a8a5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 004dfe01147f45f6ea1a563f8e857444728b8ee9b79cde383f8f6704bde3c0e8
MD5 a9553e32e9b83b3ce0a31f17ab9c0407
BLAKE2b-256 26aff4341c78a77868e40d3dc68a1383cdafd357818fd700a0ae64a8dbb47f1c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 0a0309a0d271e0aa2fe24c14e3408e674d4cc57dac7b487ddc701ebfcbceba28
MD5 695e90d0be008cf6a1d088a8dc47b1f5
BLAKE2b-256 555c905fc5dce6ee3c281f64a1598c27239d44cfacdf1e5fb8a3657e1bf6be29

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ec3f11d1ff7df243a6070e31f2e861b99c00f88ec0e0b592c7bf0bfda1bd5e47
MD5 d31895ed89d3424139069cd88f1d21db
BLAKE2b-256 ea32eb06fd9a6a7462c0a9d6e96b0838eb19d00d1873344e0834d08cca7b5369

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5710d847d54496f1511c724df293023a6701d75c4dd4a5b969095f9874ea245a
MD5 36a27c518631108be5b06e3689113b9d
BLAKE2b-256 e642f9128ccb584e08dc8bb3858cfa85635914d20eec2678ea26575946c03821

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 fe6115f6140f4e2df440ce77c8c5ac4cd71d4048c048714e4d9f8f5b6a131bde
MD5 57b7b05d6d6a356e77125a4715c7998a
BLAKE2b-256 05fe93e4272f4cc5dfd753879788fdc71cf79dec91fba3a77477f5660c7b8efa

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7ed2356f386f36b43f98bff542b2e6ce6bf9194b47a977de1b1343fb4b1b986
MD5 16e8796037e9509fdab17e09310a547e
BLAKE2b-256 905658abde5300bed860f3f739ddfef35048d977fe6d2131315a1a064538b8cb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a2769e9dcb6a3bf63ef32d39cfd57e59080ee945cf245c666ce716db901f1545
MD5 7c8188b258860e265cb4cdfb4d0b2961
BLAKE2b-256 de54aa11dee6d618cc8a2224b6b9044491680bfa2b1d01302d07d3110231eec8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e408a5e351b464384ce5d22e1708924acbb2c941636f195b98e23764817b7ff9
MD5 13ef323c6784b4e12f61a62e41e880b1
BLAKE2b-256 8be3ebb4840fb4d878ba749bf7a521492de9642dd89db8cbb9195567956c8831

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d512419d7bbb6c1b139d0b9f8ba481499b1e39efd21e3654351c168d90137c8a
MD5 d624dafb29445012acfd6c8b3818d3d3
BLAKE2b-256 6443d8d0cc99076be99fb913196af4fc934302456c615596798ead99e14ba003

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 5cb5c7713460c3cf75f668f05bce176dedd4ef396f0c7c3fd1e2f1cc8b96242b
MD5 e46342dfdde98eadeda5ee3a1757e12d
BLAKE2b-256 857327aab03b7363083f42fb3a43007def78764ba10fe67720cf1d02d9e0d7be

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5c7221f696c850fc753c84b52784a5ee18af60033fdf4e2efcd4ea0fc6f69681
MD5 5c67f7b90bcde33bba56d61c63b685c1
BLAKE2b-256 f60a2b1fa199fb223585b6e366809c08cdd4b1666f3cc28a6c9bb014344d0658

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6c9ab411bd271bc86d739f07ebf7e5d9a791ec482365a52c89ae2ae994b46bf8
MD5 0abe9e0587d34a6a6f5c558fb01a79b4
BLAKE2b-256 80adfbcbaf4c3311f062e729fdcca4a89737bd51096ed5713b7c6a90afb6c2f9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 86dcb37f16cd9f45fd3e8c41d17dfd3e1e7d32029e878223c35894b5d311636f
MD5 d1ed1a6229a35fe5eb1f8c77c84c7b0b
BLAKE2b-256 c372e99422bc2e555ca4622ea86ce5a4a9601923b5a3a7223fc9e2805fe0dbf6

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 27ab90d8bcbf60598972647be6bc5ebb631c5404c0ed5bf98ede7778ab185b4c
MD5 b0173f75cc3239b96575836453621f43
BLAKE2b-256 e0dad3a833c4d02d498f7a5ecb9dd2262e2ef62fc46832c3b0b51b72203fabcf

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e26bca8eac0876de731c300d9c26a6c28551fb36612d0f0edace632566926bad
MD5 2866fbbbee24f2245b4f051c771e04b3
BLAKE2b-256 6d547f211b81017de1920d756f41fdbd05ce715da24e32c13aa98fe9a883c385

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc3b611511b4d7a295b9ae1f4a6b40acfc9a9b102ea3a06a4e2490c7d4d42f00
MD5 e625aea4b09de604f86494c4d37fd036
BLAKE2b-256 49a0eb7ea21d1238d371d1cc56c94bfd4dd059e8677d4dbbbff8eefcf51cf5d3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a4f762e9a7484075996bff8370b8374b7de42d9d1b637027a4f7f6a6a6a77a2c
MD5 8edb2a172e6143dae30da52415e5bbff
BLAKE2b-256 511dc61e5c9b989d3c178e66fa144ceed6097de74114e60de1286078aaff8087

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 95b376dfd7832424852ff07084703212845f1f8b0fb0cbd2a88ad9cc205f7da5
MD5 cb32b7f0ba4ea357cb75936caac0fd99
BLAKE2b-256 aea12a32210ab701260ff442cfa8020c8e23fd9edddead047385aa3fffa6c216

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6353a59efd740ffcaf8afd032a1670cf4c95b7b22acc2527ff4940a72139e118
MD5 25f4eff3f4e6c67f0ecbb4b26621b1f5
BLAKE2b-256 01a420cb9ad01028cb9b08d6dcc7358371c83d5a516d31453eda544c19dac628

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 af33e518bdad03dda9ec16e5530162fdc91695e0a216ae0fb4898cffa5032d18
MD5 2a57e09c8aa35ac9425f8c5cc047730f
BLAKE2b-256 a9fab9a46f60363e0e46967c588d612312621a7a35974e8a9ae3412cea450cff

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c328674bcae8d7b98552698350380a9cf70d133487d442d1449d7374e9211088
MD5 fc0a0d4dd4b85f4c5eb2a25410bf2770
BLAKE2b-256 632de80eabbf9b2c71f0d083d6f1782e6cd4417cd76b9031e2dd0f5c142e75fa

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e2ed9a4309ae9766db8c550bf55256f12234f31f5f59a6404d62e1b9003c0bd4
MD5 03e8672e16235fc13b7030809d5a4691
BLAKE2b-256 33962b605cc420e2553e1e9887079bdfdde3446d0a54553f2981bac591178adc

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9cf0fa4b414ca6afcdfad8659613b20a44458e24151d38ea0942a03c7e9b0219
MD5 cc14b88fc4d7e6b051f8ab6a430aa4a5
BLAKE2b-256 8d5dc8e9c1f00a6a16e491532104ed8133a18278f509a0bcb2b97cd3b59be659

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e5e4c11c294e268e74c2b345a2b0f9eee58bb2072af0eaa06f3aa17b7e15d2d
MD5 6ff250f536ab5fc4d4d117005b9f638d
BLAKE2b-256 d095a3687cf8a133675c7255862e374261bc9359415af823c64ea47baf703f03

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3a504960eb2621e61e5fd9e6ce06222ea6d75bc09703250b9dc333b18819a86d
MD5 1a40c3a7afc6a5bfb5f1458d4f0309f0
BLAKE2b-256 b5a94e45d91065705ce307d411788e3c1ff14b0647bf40ad852f5ac041162f77

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.5-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.5-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 01b423fb564bfb3dcfceadc4276f0bb4a3a2937acc498ae98e1383ca6fe05405
MD5 5c97646cfe93d7e057df69263585437a
BLAKE2b-256 086d392ea8ab40e67aa4240e53630b025f1fd776a15a49ffc4aaac75714eaec1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page