Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2024 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.9.6-pp39-pypy39_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.6-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.6-pp38-pypy38_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.6-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.6-pp37-pypy37_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.6-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.6-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.6-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pedalboard-0.9.6-cp312-cp312-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.9.6-cp312-cp312-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.9.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.6-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.9.6-cp312-cp312-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pedalboard-0.9.6-cp312-cp312-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.6-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.9.6-cp311-cp311-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pedalboard-0.9.6-cp311-cp311-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pedalboard-0.9.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.6-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.9.6-cp311-cp311-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.9.6-cp311-cp311-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.6-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.9.6-cp310-cp310-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.9.6-cp310-cp310-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.9.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.6-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.9.6-cp310-cp310-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.9.6-cp310-cp310-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.6-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.9.6-cp39-cp39-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pedalboard-0.9.6-cp39-cp39-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pedalboard-0.9.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.6-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.9.6-cp39-cp39-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.9.6-cp39-cp39-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.6-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.9.6-cp38-cp38-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pedalboard-0.9.6-cp38-cp38-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pedalboard-0.9.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.6-cp38-cp38-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.9.6-cp38-cp38-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.9.6-cp38-cp38-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.6-cp37-cp37m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.9.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.6-cp37-cp37m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.9.6-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.9.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.6-cp36-cp36m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.9.6-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 31384706da3b86cacc7895d1a181834642251b1e86d4a6c6bbf437c9a1ede7ef
MD5 981d48105c3487d4f868a61f5cdfcaa7
BLAKE2b-256 a38f4cdadb75197c2217f2d11dc91a8a0983bcc13efdd8e3ee5fd9a45e9eed04

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9211cd1046f83e39fe7c9b98c94e36a917ff5c98a069d0e0091b89f98e871fb
MD5 86fa93c5bc56d7b71beb1c55be72e4ae
BLAKE2b-256 793a75a2cf17f6ca8edb3be3d875a7b4ab2ddb80bd57b1bc74c91cd681821a6e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4cf6606b8476e97319211c28207233709cf4e706f53d75ab2f7753826d912816
MD5 61440e5d440aa3b53bae6bf4c5cf2add
BLAKE2b-256 e758a141ed41e478d11e712f51b86336c0601099e087480201db60d01178ff89

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d0d2a7aeb326825eceec8fd5040eabcf32f774b8ab4841da8e42da455272f5e5
MD5 2f03cfa9a97cfe6d33072ea4c2103143
BLAKE2b-256 fe0ce316014d2183016cb56236c53335a8ad7fc42c6b7c549ea7f7b774b7968d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7e8961658fef861992eb5f54c30c2e2ff3b9706255c98b0c0364d7afe5a9326d
MD5 e7d2f96f34d7b5eb4ba9b5bfcab4c7dc
BLAKE2b-256 0b4b1670f91a93dd6547cd2d01704e0caafacff09c521018557aaf519dd3a51f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 70cf9173f9af48e956db877245c99d69c1baee0189337e44221baafafebca9d7
MD5 7f881fe1ea0c5b595128431a1abd2e03
BLAKE2b-256 e6f693ff3321a4ec859ea73025f34b6665a2aef24c5abfce7a7a81ee038597df

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7b2458e8f3821355df2a2c5dbf166b0e6906339aeb63551791f4fa3c8d681976
MD5 2ee7e14e2d30c1decacc3ec0782f3b25
BLAKE2b-256 85720edc07dc5371949120c8fb88cf4a8f39b16b5dbd39b53cab27df1f913211

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a335aecb84b908533e8444763a433f07875dfbea44be9eff7fbff1f2585f2119
MD5 2fc7bee04122170f0c789d6d801b98b7
BLAKE2b-256 253d13cdd4cc1d3e0e5359d94b7336e61eeb43b8bcda51e8622c1dc9389fcc95

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a302061041a46cb1cf9848bb462fb4eda59046e843399046027c9a9c285dd8ba
MD5 3c31763853fc6e36d22dc39a8f54e512
BLAKE2b-256 02068215abde16afe694a63aa12c74ba58c905feb5452e4b76e970457114f351

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee84a8d2de48fd894383dc6e0476ff6084134a2edc867f921b704ae1fed18147
MD5 58d9a7dd71bf390390026b3c78f97648
BLAKE2b-256 bd4cb1066c74da84b7bd52ee456f5c1d35f4e1e2f37be248f3841cc815c7c94f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f735844b287f21abf2e380e26da082aecc12ced8f6bf7eadee6af5fa3e1b72fe
MD5 d076b8f20eadc340a679a6e4c0432f8f
BLAKE2b-256 77d4bf83bcf28053acabeb72581fd9b105b06da8f4b441d49d0961d987b91f29

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8af5e8e28cac06ff8f4f06da9ef5e933b449cfdfaebf74b9c2a7c2a6e4db03ff
MD5 34df31bba222d00f292e7621421249d0
BLAKE2b-256 be09e2cb87623285d6d1c63b781090177fc3777282c682df35e3cf38f7a304cc

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6b66d41d291d9cbf51d5d2b87f80a46a7d70e1b9aaf225cce897a95a1c46cca9
MD5 afca70feafb152e7e56f670c2a652074
BLAKE2b-256 e61c83856492a7381c22ca61182e16ca3a8894e605d78e9dedab1021023a81fd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a52ff7ef082ec3bd87a56a6232526da18e37986522abaf033a951dbdf5ad6795
MD5 e355dc4d47ea06573f31c16c6b53e345
BLAKE2b-256 454450bffbb7137c875fbaac490cded7f57cf327a1ee90cdc9c3c99a8e979da2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b08bbd68d75efed4cdbae68b6c01797c1f656e8a681c9c33cc6377355210847e
MD5 ec1d28ddee6083fd1094b74233ed5f42
BLAKE2b-256 fb1067d4f6575288bf0a58567a8e41a44cc78a626abd0d6a303dfe4f3c6855b1

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 687580a7a41a1c02e62359dbdca05615d5923affa5f27b122e5fcaf88dfef62d
MD5 8e26d1c88e2677740f39216e001aa5e9
BLAKE2b-256 ba221dcf7783c941b3d2fb20d354935432e221031fd6705ed6a197904affc583

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 706b4d0262fc0880a31fd71571df57cbb89d38730e211014852252773b7481ae
MD5 3f88b82cc0e123c4838430919faac6c8
BLAKE2b-256 19a2a981bef2714cc6a398c3f7da550fa79f15c6614030030bb87cc24929519b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ca5a796fe77fa8982bbbb33e52c442efa580b8c8c7d3d1a0c6e6f3e72cc6b15b
MD5 fd1f255b0df8941c823320aaabbca17f
BLAKE2b-256 c453887eff2512a79b9ed504cd4dcb9879c54383cf2ccce9f1d00fc49e586e2a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6920672677e5a4ec7cafec132d9775ab0f4092d6a87a380709b1b3a7ae4f2031
MD5 9f88d11a347c1bf5125e6c361279723a
BLAKE2b-256 8bbe296a339fd24f28dccbf2578e935d3296c9fa02f219599f70cb2e29f5831f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 553fabcc90bb6ea60277202f0ad02b65d08ef2259a8a41b3041c683a9235f260
MD5 c6e08055905fe579b97add9832ada538
BLAKE2b-256 b38b73ca9a0105d5405259548e5f76fe3182eab55b6f032489f4b9c72306993f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 997844a4a6a4f1cb8b972fe181d435ef2aeac4e6e0a8adde9cdc95055e9544c3
MD5 568bc7da8eaed0f5dc88d2f88ebaf07b
BLAKE2b-256 dd81820b3e8d9c4288e481b19b81b2b09c14f6168bc80b0ded5c7c3e446045e2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ce1a98ac8af2cfe75875367a456263df374ce720f5b22a5022ff7e4308ac252f
MD5 af17ea12badef0202d72bdbece85507d
BLAKE2b-256 80909ff75544f4218dc27c2f5a4586592282954d27c3776b882d8d14c9779491

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 44b58ee7af27f4996e0b52154504871d04c3b4de4216b1399647ce2b973ba775
MD5 0e032394920d3edb70d3cd27f852cf0c
BLAKE2b-256 45f8226df62ce4e023d4d46e78121712efc8ede5fe6406953d4d620fa1fe2979

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2194c34961f3c369f22d6acade1962193030e677d75899f5141b54af4d2e364
MD5 e4ec3b10036dcd85322edacccd40bac5
BLAKE2b-256 2448b456d290a62ba552709a294d8ecf714e0961e46dc95a5f25a72bc1b10c5a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 91b6c7da0030ad723b9996c9fdbb58380025ac301dd433146fe8844e3e396783
MD5 394a29164432d79bc0b7f6cb55eea723
BLAKE2b-256 153ebfcad5cc424649ab1d689d9c34b9db0f6bcba65f458658393fbdb79d6f39

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1a92b95a1e51d9b28a79bb05a45b7403934a7dcb38d4f21877943469e80fef29
MD5 f52f6757c6605a9183719dae92087b2c
BLAKE2b-256 c04c2594d1e63e4c62641ae74989a8069e0c9489bd8c04810478d0efce5be403

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 56e177b9826b452aec353332054fd4e723b0ada7d1456cfa93421b1cbefbfd13
MD5 6aac87bb99b610f5a8a7d0f6f1891ccd
BLAKE2b-256 99a3ffe194da45e0594709507fc1347c2e57b1e1740343f6c9384f9297f2af61

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 042232d1632c661e7896fb962a46ddff14399ce59c8547505240c09af4e53812
MD5 c24dacc6ee49eba5bf9b1225a6cbd056
BLAKE2b-256 d2f72643d1d0d1fbe2538cafd502ab615c515465e015f73a03192c20c57feefd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8c467fe3619e0f142797579f94ee159475f6e79a65b15df0892ac730a38014fe
MD5 e637db5eaf1cdcd47edd01b73efb175e
BLAKE2b-256 c63ac546c8263f9e0faf2cd55924966848416e3ef90c1fbba0f97547306b241e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 09c0cc46488cccf09a06d06ef087966e6535ebd17f450c1a8000865bfe264b68
MD5 463e3765aadcf5f1e27757916e66e7f1
BLAKE2b-256 570d4c8da09565393440fb8a75ba2f7613c2e5ecf682499de166a7fcb144d375

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7b3e81034f26b2d692f014daa8e0cdabdbbd8b121cf91b1ef6962f33b47b940b
MD5 6bcd3f135194a9f12ef85a7ed1d52ffd
BLAKE2b-256 5eb582dc1cd9cacef62f72d44fc85a3ca4ca3b85d73acabdb792a7d3a8eae21c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b0b4048fd9efaf12a0718cc2f5f0c14048f0fb2945f055ef5171dc5a4782744
MD5 9f86d612ae8b33a7ac08db662391fd48
BLAKE2b-256 962154b5552d6d492360e15f273477aed071d8f2197cfafd8f9935c38ed3ac1b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2131c8c1e36e9f4682b323dddf811322c36548a9413e6a38c2e0ccb318afab41
MD5 be54646646674fb76cbd3c0e67b09839
BLAKE2b-256 a5789afacb3a88aeceb75eefdb4d5d05517cdb7d2c704d7bcebb4b4ebbb4185e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4457550500ffab304981a6284de6e4411045c704bf57eca78f55195a8f9cb2af
MD5 66d65869f7ae1e21456f2d0ee9259f96
BLAKE2b-256 f4b8de520d9407a733649b2e00fe879592454c024584beb98e8d654d711226ba

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f82408d59def93b090c502cfe7ef4d9216a4c15de6389b776af791a4dc51bc54
MD5 f4b0501b02c8f75487fecb28186efad9
BLAKE2b-256 c68a25e5c38f24ca5443998faa38f873cfddb9d91d42de271ebff0522eca678d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 c135aae363af6b02f1b824ffdc036cd87eadd18fc9088b1c0e325ae09fa9f026
MD5 2ceb91501d9aa85b594675f0f195fba3
BLAKE2b-256 4271d6a82f132e48a1d05eccab318c5ca6d5ef8759607c4d405b0712a1576417

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ff770d18f77d40fdfd6e5f14c0174692723638f3ffdb4aac8e36fc3248725877
MD5 be3b49496bbfdd522969cdce97d4bc1a
BLAKE2b-256 fd8677b30a9f71186c5ed49f429bbca90b2ec6a0c3012dcba7d015ef30a63864

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e92d452f97c761ef536feb1be142038dec45e4839c079b9780c29c62390f951b
MD5 711097bb685825f2269daba49bd77ffd
BLAKE2b-256 0d16406408daeecd5dece0385578476ccc2b58e295556e8bd80901ee1ab0bd45

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 efe5af4b867ac49dc3265332f713e89a041e0f86bb05cfce05dd8c362d751d6f
MD5 4bd338cb5589cf14cfa47f73e903d0a0
BLAKE2b-256 dc721d0a768653c2fee59e3a11053739191895e5b9f2fefae1c701deea3f66dd

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 42df98a1710e09124db87b0633128a878d5119767a282e5ea2a34266801b3465
MD5 071f249fde25b04f1228d120615fca58
BLAKE2b-256 58cf581bfd55a9a653de609577bcb43987481f16f5cef1366dad98e3cf4dbd7a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8cef416037b9907f37a1844eb3f765b767b5b4fe18a829ccc2c6471e180b98c6
MD5 a3d41c458215855d9eead1e9ff5227e8
BLAKE2b-256 527cedbeab5a6b2387a5e38addd7ab1e139eafe0522583c58497da315e490b89

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0d7f1605d1156387c7b1dbaf986ac5fbf8076f7d9985c47e94eb17f624fb325b
MD5 7398ecc9da6c68c4b4b4a8e3ad861de4
BLAKE2b-256 1ddd62df04028d7d17fdba38e8c4ac88fd3b28097aceca679a3a530950a1770e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 02452dc6f38e05fc38525f5f665a31555f9d5aae22df2b59922eb3894448be84
MD5 e2abfad7a316223a54163454af1b18a5
BLAKE2b-256 bad1a22193c898b01bead510f682ae6f424ed4746080401ee161499858bb150e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 11d491c7b669806dbd4611b10a720e0e9727f319e443d477a5f1e89f2919bb01
MD5 d2444e921341c84c313d16824d0530ed
BLAKE2b-256 86e7f84f81c7a81560aabf152c9511e21f5fe2853826218f0bc161fee0e36cff

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6ed6809cf1f72676856c796cfc45b3d71388f5a99086a7a49a377137e2e014c5
MD5 f69e780bdfb797990c3c52c2f5a75241
BLAKE2b-256 05d75f9ed45d20d341a499d07d123724ff7c36eeca212340064888983d29a6e2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1b4adbc374543b136c608e54b543409ccbc5d775f47e66ac8ac09c35d0e02564
MD5 583a48bda5532a043606d7365932cbb8
BLAKE2b-256 b4642410ac0028c9242abdb24769a0222ffda9c90ae1dcd6add3d688539a4196

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 6b928229e8e9481b259c2b47b843ad0ef9756b5b0e0ea54fb41e48f84a6f73bd
MD5 b28d8687ccdd7c05338d153374ea9a92
BLAKE2b-256 356b8f402ad9e4a9e98f8d29ad7bedb9f0f2bc31e970397e42da3487643cfdee

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b844cab0d707d7e05dd9efc2f0a2fc50ad9f71bff1b617774ac25563dd94e6a2
MD5 7cd1a505d2997b0fb0e596d493f1fbce
BLAKE2b-256 d92bcb13a875f91efed643e8eaa18b7433545b781351ae6c90adb156b32483d5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1929f491043f3e40e893cc346054624db656e6af40aa24ca9ff9a16c98c16a57
MD5 911628a245a1a6b27e086af3bf9a9a68
BLAKE2b-256 381099f9873e350e5f23bfa5da2354c6450b8a29a8ad1e31663ee2e7afcde66f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c9d80847b95fa308245c41f9bca6ce4298c1e3c259490bdbe1e03e211f42cf45
MD5 a1560e99732865b3554dd00d210db6a1
BLAKE2b-256 fe69da6e6b0b024fa830e88641bf472e5588bcc4a52973ebf49bd98e6174bb65

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9adf8e3e5c87a966bec59e093411980ebb836eebe10e9899d6cca3899ca6a54b
MD5 4c2debe486d2e72ec8913deefddb13e4
BLAKE2b-256 9fad768397263d018954b87e19ddc4986f7129f61e8e32f7c6e818e0e304b3b5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 5b628a99358375724219fb7356be5fc5d66c04c7f2a6e99cbf87cbb424064457
MD5 c5c4d960b406325d0e13a2d0fd323fc7
BLAKE2b-256 d04cad32371e2620e9e92255d6da716151b8f70fd287b24ed25e69c08b53e1a5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6d70d1b3ea7f70d37f257f7ace4665bf00b25375f686f2ecdfae8d664c895c0f
MD5 2991a445a0c3f092affb1b2b03cff0f6
BLAKE2b-256 7120b98e8b2a30b58d07556fb993c26a1ef000d949a0c846e724b78827777bdb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f7f8124d8adbd4ec5b71377714f77f45f78dab957deb18fd2dabbf7f29d21e8
MD5 2fbae0f2090cf4a1993e5c56823f5a5a
BLAKE2b-256 e71912f94e79e2f8b33b6c23223a2b0b3a5b912cd7d267525c4cdd94524c6d83

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2083cc3a58a2fef46ae88e6c96daef9a8217462497ec0180c4a59b61f417aaba
MD5 84eb74df7072fa851c11fb4bd6e2ca06
BLAKE2b-256 2fa63259acac423a8dc6d93a6f397e454fbeff375f27c972d9d3cdf66225145b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 46a5e456b10489632eb992c642e449d9190d6d7749f835a4d938b4d89e87731f
MD5 c5363c00e3dd0d6f36bd885de8e084d8
BLAKE2b-256 2eb662da7d7e2b10d40eb0fbeaa04ea2b4b85d68229d2473900107c49aac198a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 31d1a0f137e67a9f63975a0f8f4bd5e38b52a9e524211cfe646f69f37736c371
MD5 b7066aedbe664ff5cbc3209867e33349
BLAKE2b-256 7de762115d6a6b5c02d5f0621cf820f9781e5a83afdccb6be678494d719d013f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 175b9ed60d91272c14460b251042c192657bd2143a70c3ad93882f2e2bc67f9c
MD5 1ffa2d3101fb954054d508ba7fcd3de8
BLAKE2b-256 3000cfba7ff313a65e5193a4c5a638a64b454cabb81c11007a0ac77d813dc385

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6130516a4f184c49a876890baca0c85c70e1622406015fdc81707fda06aa2365
MD5 e6f2a01467a5b3cc49225a220e845dd7
BLAKE2b-256 582c497e45e4725d0390dcefd06708e91a7c4a98f892c5d03e1d79c7be98700f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.6-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.6-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 847b7a71521fa2cc587ce35f2f2b52e4c3d2411dfc3b04c3e3a9e5be78d536a7
MD5 f0e1426e88bf18e34209df66d6746598
BLAKE2b-256 d244d485e2ae5af04b7453ed20019c9a7b3badb496971fedd0363cfef8be80a6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page