Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2024 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.9.7-pp39-pypy39_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

pedalboard-0.9.7-pp38-pypy38_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.7-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.7-pp37-pypy37_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.7-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.7-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.7-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pedalboard-0.9.7-cp312-cp312-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.9.7-cp312-cp312-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.9.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.7-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.9.7-cp312-cp312-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pedalboard-0.9.7-cp312-cp312-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.7-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.9.7-cp311-cp311-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pedalboard-0.9.7-cp311-cp311-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pedalboard-0.9.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.7-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.9.7-cp311-cp311-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.9.7-cp311-cp311-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.7-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.9.7-cp310-cp310-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.9.7-cp310-cp310-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.9.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.7-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.9.7-cp310-cp310-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.9.7-cp310-cp310-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.7-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.9.7-cp39-cp39-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pedalboard-0.9.7-cp39-cp39-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pedalboard-0.9.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.7-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.9.7-cp39-cp39-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.9.7-cp39-cp39-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.7-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.9.7-cp38-cp38-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pedalboard-0.9.7-cp38-cp38-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pedalboard-0.9.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.7-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.9.7-cp38-cp38-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.9.7-cp38-cp38-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.7-cp37-cp37m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.9.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.7-cp37-cp37m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.9.7-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.9.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.7-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.7-cp36-cp36m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.9.7-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2610095ca3910667b8f8f9269a04c98ee0639c465649a6184e7a45ca110c9612
MD5 a53fcec51fd9d081d31e7cd139d1bfa5
BLAKE2b-256 17d3f2ae79954d4d6de2aa0111db5054c9aa3bc169693cd3530d8f7144479155

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8abc92d3b2978b9594907b92361f5bd165256639c6ce5db3996c8d335238dfd7
MD5 d0f4182e48725cc153b74e08bbc1f3ea
BLAKE2b-256 50072b85027e643fa9c929ff88e27d7f7d3a1c060a4c89fbc1e64e55afe7b3d9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9d21b3349f0703490f80552bacb7017657c3e4bf7af5012a1cc107c2f27a68c2
MD5 3e09c2ccd73900748797542a6851dc55
BLAKE2b-256 8a4c480c3ec8e9897d944314b991823b4a1fa5168293846cd06763e2eca04d66

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ea425bc66851dd1f631652d0a8f1cb91b62f882099d36630ff7f1da1a6db18ac
MD5 0021596e282df0bcfafd8e2541655c74
BLAKE2b-256 31410eb1d02143c7c5c23045513413a4e35a6b33df352b7436f815c7de262ae0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1f77b98567edf3d5bb4235097ea5d2196ceecc1e380320b9341376f662cc7bda
MD5 fca33d5d0c7d6e996a029da054507372
BLAKE2b-256 1c6c93184e685d459f846178832811010c358b43c7f93182cf5a0a001e3c0852

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 27a3a0be1ce839690ac9018b74274f699ef074caa78c651fda962ebcbe181cb4
MD5 fe5b3d4f051213de4c6c43d4fc2a6a22
BLAKE2b-256 6b2e2c7aaedc3824dbe46cd39a826947f2e3c923dde816061c33f54acb9fbeca

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 89ebcce314f03bc70926107924bac9559662a02a15cc7f5b1807ee0186b899eb
MD5 6679a94d54ad79682fa2f3a566c330e3
BLAKE2b-256 f6582a59ae4f0ab6b4daaf4682960241b45aa4ce9435dfca18e5e10e1cbe3f10

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8bcfead36f3e6060c6b3600eccfb3d58b31749900d686cb81b3c96d2e07a5c6f
MD5 7d0b1af29794fe79b0f234a9d212cd06
BLAKE2b-256 48f1b878e1311b139cf5ad76827bcdaa63076ca3708969aa5582d2f94eb2fecf

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 aaea09dd40871232c02f2fcade50322a7422750f8b4746e1c52c9cecb95a3185
MD5 cfc50858afb612e7721a6a6bb5b760b8
BLAKE2b-256 f24cf75b3757cb49a0f2b0e687fd8cbb9bf56b37f7dd1ca065ca7f576ee8ee62

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97ebccdf7ce2ca6cef2eed909653ffc8a833c75e5c07e062ab8f8eceb85297f2
MD5 ebf75456d35f5f9f63d8e454abb6b361
BLAKE2b-256 e3f165a3706afd686066f977a95ac055b85e6a8f33dc3a4f1ccb47b93191169a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 358bbdff20ca43c858c0baf25fb45c0fd029bd2866700b2e7c351a851bf94f58
MD5 e1487e73b779c955d58978fb817f3a78
BLAKE2b-256 16d96609f895efe71385522cc0cfe87c8d584dc62c3df5db334a2b12ec2be13b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f952420bde9021eedb3f0a04cf10c7f37e637ae100068ec219e77f21edf74b40
MD5 dd2a6729b7520766b091b5631368b897
BLAKE2b-256 bd61c4f0263a4329e90fb770ed2508c53b5c0f8c5b240b976f8bf0e81f74c007

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 67880be39b20ad08d3ec676d43ae905bf2974142341cbbe1f23314c2bbc4d517
MD5 802216373ef399491557a6c0bd493623
BLAKE2b-256 45139501b3097736a785827a7f64b4b93b4f0579bb3d1763ca965644c5e45951

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5c5e17e9ed89d626c0b3ae4b47aa2eea33a8fed3b2d001db797a5533a1a3c224
MD5 cff6e00d0848dc677344a3a0d2493627
BLAKE2b-256 80519d40a1d02b55bd8d315f4d7560c4c43fb702aef96069d1064624a6f0bca0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 52ea991af445ba7c5ea85b6c4344a19824a4abf97a575ccaa41a8aa9f1eda038
MD5 c3234976475c545c8ef588aa7703a278
BLAKE2b-256 7b2fc9d852b91eb64393c3da0a7906855ee98fe36edbf55bff67585ec0859e91

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a56710e0cc0125982e02d8fe315975c826d8abac49c6cc044e50dffe2e9b4dff
MD5 2a9b8c81517b73f3d6dbe70b54db3322
BLAKE2b-256 161e2f9359e0cbb5d2c0f9f9cb2b417bdcdf5fbecc5238757004a298a8c65f1d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7e9000f16dbf9055c60a1cd2366085ccd46fec093d91605857771ce7a5e9cf7d
MD5 ba87a51cee896a021b620fa1cc79d1ce
BLAKE2b-256 7600936cc25e104b31b2737d2b8665647da4bdfed61173e2fd59e3feab11e717

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 275057d089a5015d8d5bf9f593de07df70ce4734833561e0ccceedbca2538894
MD5 45367f5cc9edc8b705b1699d1d22d245
BLAKE2b-256 04063dc293fd71339903ea42def6ae836abb78a43dfd84ff0e6efe376f47e2b4

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5962b84b2c578b322efadb41c90dc6ebe8446050d59a9c682a3a3e42fda08089
MD5 144eb6314bf83c209e6ef256a2b8a9bc
BLAKE2b-256 bbef55ee2ffc44d99d5c26057ef0163ac66c50d35bfe0986b58c2f45ad34178e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 2d4bbee2414ff9ba61d7dc13d689018ecf6834e9fefe6d93cdbd77f9f65f84fd
MD5 c89c4e9ad5c041666c95564dce25c997
BLAKE2b-256 efccc7f89be62d7b362b015f9b3566248a85fe6a287a876dd2cdf07b31f229e0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b1e1b0c5e2e6e2392c3c0b5cb46b1c5892f872c3605b05c70170cd20db84b7c8
MD5 b230f50f6ca1cd210c1f739152936ac4
BLAKE2b-256 aadaa8c79998aa057b447a08c5a2d9ccbca81dff19b99ef31af7fe86d2f782eb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c9f2ecfd1adbebf5094fb7e06f77aefad8c2008a28cff3e3735f35c83267729b
MD5 7bf329040ef61b9c0b06d2eb7c814f10
BLAKE2b-256 f7a8fb3c23a52fa0ec3ad327faa102024048837d5fba936bee7ec28f14f20c55

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a614fbf9ddf703b29638e8ad4cb80261401a65e413d41402995afd553c2cada2
MD5 a9f8152d89b292bac25a8a636f290f17
BLAKE2b-256 44bac915905974a10f79bfdfb84a23035855dae3254721152b6bd8f2159a8024

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1da841d97b9971ff4a0c11eea822bcbb00b57aee2524dcd50c24a51f9c71ddda
MD5 ff701a96033f57ed7f212303212e78d4
BLAKE2b-256 595b53a2e890afbc25c8c1b00d6bbc8d5c2dbff49ac91a0eccf1eb238909a595

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b9d8df5e0a2ac2959e09ba91eb67828cd156c670a4c900332baa4d93b5f52d7c
MD5 34d5d94df69f895788c9f0231e205893
BLAKE2b-256 09ea44ca5c6723d22072db871d48b67ffce4599532e810f544ec7f044cbaa100

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 09455c45bb7d9ea871f4a4e42fceb83e957c66b0ef907f925cd3ab18385b747f
MD5 86a2f9c79f8ed9ec97521e41460da721
BLAKE2b-256 eddb6613dfe50ff1dccbd3a2fb192dd79b6b994aaf7ce8e0d5e16082d68e1822

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 cd04b9b18f142e8f38c70f555701ea74b52aa06122733f80b043f125ca38a049
MD5 9bdb659b1c68593055d2e2f82242cf49
BLAKE2b-256 9a9fd7b0d68c908c1855efe9001fcd42339b83d1a173fe749cf54309e035b178

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 a3f7d409f62f39a543fc95b4601d5e6f30562e9302b9bf27396a65ee516b34ce
MD5 fe7ed22b2ef4fc32d1c98029997c71c3
BLAKE2b-256 eba13865fe114f259b11470f2bc91d347e0619394947be98f33b12612dcf06be

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2d87621130c2ff2ba53ccd8254843baa30754d7369ee0683a8d45d1f24e57d10
MD5 d9a4a634f42c8ad6720f547030e3f1f8
BLAKE2b-256 31497d4edc5a904c1314afffd4dac2457b6abbd08845c05ce0bebd357adb85df

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e5a8998467190f0d292ace46ae05c4309040b60a1f6d481103508c172b229b29
MD5 fe5f9a88d2cb1544c751c2f736f09c19
BLAKE2b-256 3f8ded27c35db774d97a143432d0d1deeef72e015719fc261c2e992204d8fae7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4f0ff3876c721f3f7d0ff854bd0fb2ac007c43a735cb52d4f5a850dd15d93505
MD5 2487fa13f47124c1f08fbc6bc49c5324
BLAKE2b-256 0081dc0c10f6e064798f8b607d77392e19bb8f7b8c2a6228a635fa51a2e91143

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6065a9d4429f072575308641f8125b60d79cd56ddd30b31b0f1c4424cd04222
MD5 d178ada38dc6cef789e0c149a2de52ef
BLAKE2b-256 ee84acedfae57318c4d32969ca66d0ea198a96d2d7c64a4bb4aff171376f453a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 77d9798acea029be62f3f0094b8faf78ecac7c386012c554646cd0f547086dd8
MD5 cfdd37a4ca1055520ebd258bd396a4a6
BLAKE2b-256 0713757135d81291b533c36091da57df965bacc0988d3d8f3df63be453e4130e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 78712f5c0459b680453a801cdc4e5153ccbba0c643abc3bb4abb1567f625cd2b
MD5 40fd9a24cf4eeca67a042354b61c1c7f
BLAKE2b-256 bb5bb29e4a140a6e691df2105f0d9f12b39d84a74ebbeda2c89e6d5283c5e49b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7af030c586ff9352588835980193bb38820a322b3f8aeaa77d6f62e300306a02
MD5 b8c4324c845be1a68e9e83a226fcdac8
BLAKE2b-256 d1806dea77eb5a1662f91ca9a019c20476c11fc8adae756feafd002d91ec5854

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 54e4771076b93c1da26b67dbca5db6659f54e8005bab2cc3dba9cef4a399a61e
MD5 544647d1971403a01a84c04d832ab282
BLAKE2b-256 987065ac17d01d2084364b50549d7a206b9c25d0f204ee4ae3f3c76af03b3e6e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1a7e6644cc1b5eb04724106ada6ce577c628b19a0e824b94b00f6400e9c0a21d
MD5 41b18bd31ace26aa5f0eea05d177739c
BLAKE2b-256 b279ed8ed4bdf43e2084cd4bada90ccf09512a0015370978b3257aa7267a69f4

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7240ea521597a8e7f98eea3a32429789aefd5255b95e7ee78c6f87b73394ae48
MD5 6c824591be3e80718303c3f9f79f7076
BLAKE2b-256 e767ebba55e03bd41dd45fa0faa422c44ea452f515de8a059ece7a600534b7df

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 61d915b3849888371247411160f4f184fd81bf51f7fea3d6c0d15bec82265623
MD5 52b3878c777a03313f803892488c352f
BLAKE2b-256 8fdb976f64067b337d418005d757c823720d07d038822e47110a8be7d8d0ae4c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8ee597181fd10d29d1d28cf40b960d613e042ae98c3f9506347a5f4bc2302a0a
MD5 169f3c1ffde7c8b8801de1b9fec8c5cc
BLAKE2b-256 a463876af00260c3acc375207dc7209305f4fa675c23f0296abbba5cb6503540

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1c3c6879e0e4e0d3d43fd6ebbaf6055df201f8a41ccce0a8145a0a6f1793531f
MD5 59ee997d100e224a5f956544ffb47c83
BLAKE2b-256 696e033452e50ba2ce2465b122d8361acb2c4c46415f407023b8718ce4aed9e6

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0fc3e98f4eea00428006b31c750db9c4b17381b3334de235640ae0989945578c
MD5 d672e891fe3f08afd77fbf67df229bd9
BLAKE2b-256 f97a26b7c33bd6624e53d0b25c8c8da0c251336193266bcb7100ba203015618e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 404e00dd806dcfb7f66e467c3b8b3ac40a5064b16b49583836e19b3304404f5b
MD5 15cc33d27a7ffa47b16a3a3b21423d0a
BLAKE2b-256 67349d9736bc552f6bba7b843f61b38a8df0ea87b27f40f0466209c496e5c253

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 28f33bc2fca7089a4eaa093bc55a9577d0029dfac39746845e40d0a6607748f8
MD5 c3971418d215f9aac881c57f86c8fd9c
BLAKE2b-256 368d94aebc1a241d8aca25032f2c28e59bdf59bb072dad67a09d508da3738940

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3af48a7bd81321515d0124f8b010030868e1288dc131983c73cb868023edf7e2
MD5 1803d3186212d4c3e3bc995a97b854a8
BLAKE2b-256 d8883c94d57e47205bff98096c7323d7b05ab00414f593661b4b0d743a8cc9c7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 52adb691d3f1854166432eea46c35fa1b89908229769f96bf5d72fb1dd0746bd
MD5 57b37063dbcd1dcc5226d67d6de0940a
BLAKE2b-256 5b6c0765aea47dc7aec8e44d89b026ed87a25b85b0d7327888d2ef2c77daae1f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 061f84fcb89dd98a1502ec06ff5e6e854dd971451b2d4b3a7d5c2600467d344a
MD5 970e059d0bf782770cfd75492fb5ad8f
BLAKE2b-256 061b4c7cf72a27d494e7a72d160585b25426cc2428ed761ea10ddce4cc4f28ff

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d84036d76beaae3932ad6c84f4a3338e798774facbbf029c0f30ed5de4a56fe
MD5 acb06664c6af99ca11b83f9296d743dd
BLAKE2b-256 05dbfb27caa7357d3ccf03f365c963dc0f2e02a5825fc5b238b2500a5974acb8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7bff28752811c824e10b39499a7d6de80bf22ca2fb4007dca3f425e631d442db
MD5 2d336f322050253d7c67159dad404bb7
BLAKE2b-256 f2659d2dcd349cd0874ed25d20b751b2c0f9b60e8453189c26fd8017d5b58528

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 76d2e7136eebc7cf54521bf351d6a4398ff0f76751ea40598b6c5638be29cd84
MD5 4d1cafb5400cc62f42b5f9924a2ddc53
BLAKE2b-256 0dfa0be55f5c9263715925772f6a83a9224503a9d1c356b4c6e9dc8ec0827ebb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 523528080273e4298812a537f6529267ffc29a5d30bc94de3376a0eedc84e89f
MD5 578aa2ee7f3ab78d7e3900349c9ae0e3
BLAKE2b-256 e5c10daa0edcd5c19e9c6057caf2c50eeefef07b2b744e83f81f9e241f8d1df9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 f6886835cbf1388c02e699f4c54dcc5756f220ab17e402f6a01b1f8ec1961070
MD5 323cbb5ca6cdb5525cda04690895488b
BLAKE2b-256 e83e3a2f0932e7e3741255c8c3c13f71113ab341473c958d4ca95e58ded197c2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 abe8f087771172820582f8b0901486ea6f78e5099054e0f8d829ff559485d49d
MD5 3bd4f2426a0f13b5c1a98548daa1bba2
BLAKE2b-256 b073d61b84052f8f9ad93f907a29cef446408ed97aa05cf50c055422cf654424

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06b7970952ca1e20b6eae7d21567fbd1f393e53d8527fa8b042d35d18a067e5e
MD5 49f2fe3bc60f0c09ca54dc4e6e90223b
BLAKE2b-256 46ad6074307b9b57af78d8a337df7be11036809ee9d83e6e155fca2f118de9c0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8c8e58274084fe679deecff5003b92ea3423f593b2c112ec908b7253b6e5c36f
MD5 545e2a106ae4a34ca511df4f6c291b8e
BLAKE2b-256 1f659ab3869d26690631476ed9175cba351cc1a7efa8b9f49039f2a29d98df02

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 368fb5d8abe085d681d4b3ad9eb52eb2af480ad7e4f646fbb618b16b42dfa836
MD5 469f72c240b780338505c7f5f4ef4cb3
BLAKE2b-256 d991f1e9b7a7ca89fead084865a72913d58cec3dfe3e94e142290a82018460c7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4871a999e1fd19f0468194aee46757c2e0cc759d264d215e686b14dcf774c282
MD5 17acb40250a52ca8fe45c65e75e8f117
BLAKE2b-256 83a0516f6ba06386abfc5d172afddce363bac08bbce12b6794034b08cc9c7556

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7aa8a1d98a034a73de911c8a91b37bb86830c623a7c188d853555c6520f942b6
MD5 248f8e56c115695cfaf9dde6897b205b
BLAKE2b-256 76b6901e2a898ed8fc85a0b0b84fd11ba75758c756a1d293ddf072f777bdb25e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d7b5dd100564b615f574bfc2b7da4a3667f5dce0533425bf9e812e9e156bf5fe
MD5 63974a4024dbeb423396e9586f6626af
BLAKE2b-256 c9bd45cf9ad3b662952741b2be8db3dcb4aa3783f94d3bd2001b734755eeb904

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.7-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.7-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 99921e25a8991af61d97d03e23b20b2cc24f7b92ecd7ae0d082e857d463c7c5a
MD5 0494508fee21b40dc1b4f7b073804cd1
BLAKE2b-256 4b2a0d94d87eec15b008bdb1e4618041a8981e0700f59d1f0cd54c6ed9f20567

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page