Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2024 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.9.8-pp39-pypy39_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.8-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.8-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

pedalboard-0.9.8-pp38-pypy38_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.8-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.8-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.8-pp37-pypy37_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.8-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.8-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.8-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pedalboard-0.9.8-cp312-cp312-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.9.8-cp312-cp312-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.9.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.8-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.9.8-cp312-cp312-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pedalboard-0.9.8-cp312-cp312-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.8-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.9.8-cp311-cp311-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pedalboard-0.9.8-cp311-cp311-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pedalboard-0.9.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.8-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.9.8-cp311-cp311-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.9.8-cp311-cp311-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.8-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.9.8-cp310-cp310-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.9.8-cp310-cp310-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.9.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.8-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.9.8-cp310-cp310-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.9.8-cp310-cp310-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.8-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.9.8-cp39-cp39-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pedalboard-0.9.8-cp39-cp39-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pedalboard-0.9.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.8-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.9.8-cp39-cp39-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.9.8-cp39-cp39-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.8-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.9.8-cp38-cp38-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pedalboard-0.9.8-cp38-cp38-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pedalboard-0.9.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.8-cp38-cp38-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.9.8-cp38-cp38-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.9.8-cp38-cp38-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.8-cp37-cp37m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.9.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.8-cp37-cp37m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.9.8-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.9.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.8-cp36-cp36m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.9.8-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 dde0b976e7827296fdc61e83e6768ea0020865ff1e914e507d07eaa1d9bde6fd
MD5 e229fc8e8a3c08deaa5a562e2e7bd3c7
BLAKE2b-256 219e2f2be1e68fe1feebd034fa062bdb44bb43d8823f2097ed445b1b161811dc

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2cadacd6fc6b7763d2919af86dba39b61ba871853efc213626e1712c9e4a6dd8
MD5 1afeefbc9aef19d217ab37093d924bb3
BLAKE2b-256 2b8389384a638cb768b3f059279c798d7b336698961e1261d02536de35c6657a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 464935f7b8438ff776c48b480a582b882d5904bd2b73a9f9256fd9262301a8f5
MD5 58c7f293e2aafcbfb61c786a7b39ef78
BLAKE2b-256 b23b0dae13d5ae9431c8995eb03a68ef5b3bcddf26461fcaf4fa78cbd862dcc5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d1b339bb3d1568f90673a2feac5147cb13cd8c1854ea6be846b6bcf54856cd81
MD5 dc18f456fec823cb81aa73c0709dcf3d
BLAKE2b-256 de874e96eb4cad9a90f07a6d273590e29a87d012a589b7104e4408ac9a94f8a8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 321b69c50b482fca7f558e22be94818b528ff39e7eb903ef892f15dd6b828a19
MD5 1a9c74c95625ea1335144d3354c667e5
BLAKE2b-256 3bb6cb72ce5891b4feb16f875893a9e17b65b3b3037b5d1c3ba31c205d00850b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae07d1ef3478f64979b8617320cbed6a21b2265bff90202489264739d1606e83
MD5 1ed03abe604e1deca5f99e3d28e8c608
BLAKE2b-256 d9c2f9645e530c91c39a4295d57e19582ca8e9996492ff279b1a2571b22fd943

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 061a4a4b2e53b753716b0d1d89a417a8e4f1c3dff922fd056005999afb97d7c2
MD5 ad984d0e3ee45fbfbdc4394eeef3e729
BLAKE2b-256 833399acc20d64c26bfe060c7b14b5fc764b8adeb4fc0bc089c82cba390965a0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5cf5a43b57c43f3de5563623a4418991dc5c6d873d0533b65b9e63e7350f6cfc
MD5 4f9ad591048266878eaeabb980d13753
BLAKE2b-256 b8eeef6ccf9ec842eaf4020cc1c71cf86cb8a4ddcbdd8bb5e660ac76fcb9adab

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 efc4ee5d3d1315ec573b729fe21dd8315b97abd03ae9334cda05832a7538cba4
MD5 95f8d6c735b6e6f695c3568f7fc02f7f
BLAKE2b-256 4935eb73edf4754e64f5ec7c257e0b61c7ab7eb9660b09c4bebc479609aee274

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b96ac82e3b45ed1c5d662e35fe82098f63f8f57c48c6a9ee06214677cb105a37
MD5 027f89675e8005179b497b488118fad7
BLAKE2b-256 bb83b96652349e9e22dfb537bc7123398404ff086a59a38d6983eab0325aed1b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c3a5d68f0caf4c05792b474563a3c3baa125630249cad8233325c6f78ebb5208
MD5 4c82db4e4b5d91d30852e47ee22e5e2c
BLAKE2b-256 54201b8b2c91852482cbc996a462b1605dd538ed2f7ba2b48ab93ad5260c375b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 31a29325887e348d47d8a07a6088038cea29bfa2c88aec1b8100a5ffcd82d900
MD5 e01db30b5718150b5abc3a66331cf54c
BLAKE2b-256 01c75aae111f405345f3351ace8af7b8fb2a159aad98f46a3af3cc46563e90bc

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 af2faa6c484def563849c0ce0710a8ffe6840c943dc608896a0bb9a05eb99864
MD5 7ce76a3c96fc755e8bec9fbff97ed008
BLAKE2b-256 48c12cf02fcaa005433d2c9c8d197db3901daefc37be07354b082e4a0d1c6358

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0e38e589445f6b801d1a57801da4ad682d94fdb1045af2d6763a1af3d90d3b8b
MD5 92ee03c0e20203b7580580bac9a44e69
BLAKE2b-256 fdef36db55825000f172e90c44d00d6b22ee7a17474513fbd6fa622f696ab9c0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 19fdfd07ec54beb89e0fbdad80184b0fce1c7e5b65cad043bccfdf51cd34959b
MD5 99e4530bdacb26721e5e5cf81998d2a6
BLAKE2b-256 755edf22642c244c17cded6c56767f4d92e4edeee2826cba7be488e851998f2e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64b05c2240785ebfb4ad5649b49c1a0996e1ac8ee7c87e352da8d173e97ffcb6
MD5 b79bf7319ae11db2e5d7a94e5a06e1df
BLAKE2b-256 313ab619fec37022c630021d33c0aad046a998f109029bfe2560012ca94b6259

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 98bb362b6ea2f190e292ef22010eac46c819e0af6e2184d9caeb1996fc17905b
MD5 d71b3c691ee106b30187974a7d31bab6
BLAKE2b-256 1101c73f1d45c323ef76477cb01bacd8ed09962d874710e3f4a697543832789e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 990b549b9f97c97595ddb71f6df01452e1966d297face9f34670998a49341585
MD5 f8d0a282904832f4cec0a24c512743c9
BLAKE2b-256 9d5c3cdb30ac38d9066b8e99152061cb7318d0b589e27d1344695da3a50bd97d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 aed41c2a3eb235fef1523ccc16aaa46c0e6ec13daabf6b97aec108899e8393a8
MD5 a278050f348f3288db152e91e5fdc861
BLAKE2b-256 904da85e80542cb59885b3832c96a1ae9ca9f26f1becc072906cde63e05347d8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 c713ef9abdea5ef5ed49d2c6a801516ca59fb016e4eedb3358cf22fe55d31425
MD5 b0a7a4cad5738ad2085ce488f3290780
BLAKE2b-256 91133a2acb2cc3cad647e8d471229005afad0dec3fc5154b981d04e06bf0b6a7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 885cc5e3d390e247311172b9b7460f94161e922a13711194f17edacf3d73c6e3
MD5 edaf046fc19315260a8f44236deb89ed
BLAKE2b-256 aea9d15eccbf2c74415eac8f8efbaf2a56511a74de1a950e8670343c4f71fc1e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 71970ecef46f15510bdab4a9581696b21b2df9f633e862579fabb2e765aae31e
MD5 66c37c866450cdc1245c4b286f226897
BLAKE2b-256 9100ba444d059db0034e129e81fc2c431da9a665a2b6480d4730bfac17cd177e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0777a9ff857b66a89c1b387a0eeb0a1f1e7ede3d3bcc4b531bf82fd2cdec9712
MD5 e214f2249d027dd3357bbfd2ae743177
BLAKE2b-256 cf2661992ce36619576e9dc1272e4821ffe8c59b1f0834f42ec975f82f386212

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a1cfb7b97464a82eb05cbb8d50bd66d2930dc27ad288d66cdb6a789ef95056ff
MD5 28b4decdc5633092e79bc2d801dd0dd2
BLAKE2b-256 cabd93e09ae74e9ed5ee9cbe0dd42a25001ee65a5a3b34966080abf19ff09057

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4070ddcba14df631259640207669d1acbfbdee6388c3c08a21d29b625d737e1c
MD5 7129e00ce8a724967c5588d316cdb564
BLAKE2b-256 1aaf57efa3eeaab8b5aff8953eb7fb4e03db44aabc76c086368888abafd0947e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 326882d9d04da8f83e2147473f42e19ea0244802bd451808d143c205050bbdfb
MD5 31619ccd04cbc4d6b8481188e4a2ab0d
BLAKE2b-256 02e1b3e243155026c4c942f0974b35e0bcb87f5970312de9465f95179c8b72a9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 da7a33d42f59156316073bf6646c99fe2afea65ab0cb5b817ab055f7bc47b829
MD5 df169511db843aa93251816dac96dced
BLAKE2b-256 65c52c1fbfbeef4b332532238d3d1cb060c4019aa6586e8f9b61bd968eb1aeb2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 e0ad0afb343ecc956c2acefc8505b83cdabf9ddf9d2f43adb7d33d899f0ed5c6
MD5 d3a78c70d59d8c4f8f397dc6028e5419
BLAKE2b-256 3e8b65e5cc24847edaacab32688afd218328f53e52775d1d8fccfc628f078a11

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5f1e393be18603f694eb9925d0b6a82a0437ca60be2bfec8438899736aa806bf
MD5 ad06048fb3619ab3c1ba059872b1c055
BLAKE2b-256 d46f46dbeca57b96efcbac2d8cd205818d3f2a4beb9349d71598cb4cbbed11da

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ca70111bc98042b685ad2d109bc4dda73bb67c9fb62104ae769e7a98b50d907b
MD5 b4f85a3d1864024ece688ebd020ceb21
BLAKE2b-256 0d3661fca5d012170920bb633130955008835bad38e8ca218ff8c10fabc72c6d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bc6c28a3b5f02c55f5fc749ac827d40a9a64e5cf90f646427182b3a2dd542b5d
MD5 11ceb9099b9405c6af310ac4b7df1082
BLAKE2b-256 00482b5d4ea507af8419a5e5d0d4ade34a70a2b95e760794e6d64c1597cf1ae7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb4381c7b2d6063593d43328f6ad50a36b6386e1b15e01a4bba79ba15cc6614f
MD5 93fd22106c6f9b30fda241af5b4628d7
BLAKE2b-256 a4c634a8287f5f17bb0bd765be0a7edd09f1c89495ca35de639d30fe18ba9fb3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b28c3deb4f2cfae76fcbfc5270b758530c0494c9e0eddc332ac81ff7c751b1d
MD5 39e591f3dcb405318f54098ed763b48a
BLAKE2b-256 cf20c4f7cbaf1c30e4346683cd7c696fb85dd6fcf6877a1d3212c5ecf09eea3b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1bf5e3641f45498ddf669781906f6a8de3600169a37e96903eb97898b127d5fe
MD5 13c3929beb61c5f4bc00d869a09e7b66
BLAKE2b-256 2ed454a5e293adbf349e0d64e82607aafb97057e3f77a003fc7b8fba82ba3e3f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 81a6ba1378f784578f8de49adb5f49d747e7550d67f9f1a97216519e75172885
MD5 cee7469b43f329ed0d66808517ce8d79
BLAKE2b-256 9a82d0e35fc929daa7874467692776fa8d31d2d0403a13679d707b928126f866

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 836c11f0f03fa71bdbca1b37741a20d26fc894d4af19fe66515fdadb7e4e0dc9
MD5 d470d97ccdf45c487263ebf509fd15d0
BLAKE2b-256 059d0519dd02f804e22d126a21c51fd0574f8a33341bd8f5a879e6263b924df8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3c0735a90619cb88e76c41c5725b2b5a320be4553f6402e812d3b525e0bbdcc8
MD5 1747026c5da337694eabb0038724cba5
BLAKE2b-256 7976d8c1eb91c9f10b7a8d5465e0fffd4cf4d96a87f865b9a6429df52065c77d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e1b63689eb989624d1797c747fef88e02a27760f3cfde0f01bc43ad8b5eb0a7a
MD5 03c3a347bd62535a1c3394b31659c057
BLAKE2b-256 f7ff1848f5dd2190e4732cd4999467ad645fc4c0fcd1742a5abcdcc77644868f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b38fd6f3ab654ad9c2adc342b94a34442fac601b8c784273b86e8e8e133e491b
MD5 72ef6ca5afd8825e89b16ae349bbbb6f
BLAKE2b-256 26818e199ccc19e8fe1fb5d4fa032a411d9ae74b7ad370b72adf3d0c52935998

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7e1b18ea68a39878fcd4e0a96274dbe80769a697584c05c2b66769ea6cb7fc0
MD5 cc038c5dbc0574f6f4a503287c0fcc5b
BLAKE2b-256 00df8c6f077117b9156fda3e2c1d0fb4c40f93e3a0d13930390e9fa316dc4e0b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 866d8821d1222883cb565e6c8903518210216b772d4b3d3daa3936938116d66f
MD5 354aeb0fc58009050178f0b76b2d7b18
BLAKE2b-256 332e39f1b785cbcd3cd237de6d46bbbd5cd8114803184a74618b6ac11908c49e

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ed56a475494d6fbfc5d665ac1bd10bdafb2198e52c91cb6040671f431bf79ddf
MD5 5d56a4eb137472029a67e8d1b61fab05
BLAKE2b-256 680c7492c2628dc1b6fddd9efb9e39a7f7d8d58f20e61f7398b2796544b34658

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d93ddf925b442ce10b16c2e35efe578533b8a186bb07eaa33392d8f1ef45fca4
MD5 66a7cbb919d2d6f4ce57cd13fe5b80c3
BLAKE2b-256 055e34a90a7b9e7f9f7ef9ded423689fcbf1e67619f501f335ab98ef469e241f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 2564b362cd9eccdfc912d7b74337f1658559e29b3605a34223b4e6d312d6a1f5
MD5 cb36cec64c341bb6a06848be01116ada
BLAKE2b-256 9ef4e3bb62f2c863abededdd76d5cef8a36450cb816fc58900e3471889425c91

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c95b2711826a1386183d8d4aad7076bf144fcd1ff31d58d88c14bccafe7c77c8
MD5 3a25503dced0a9784bb0d8ae806fa3d2
BLAKE2b-256 839a412070ffbe11bdfdfc9a1df68cf4a67910f7b950100f1adc9c58ae1d621f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0a7ad706b708f7db8944269e663ab3e449b449ec185036db1cf130614ddef831
MD5 c360da88eab9e19efa98f9db6e1d81fa
BLAKE2b-256 44cd8129a5885b9b76083a8235cd77d81f1c8f97b4002563abda4e6344277d78

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 dcb918c9e46e28481e9a3a6b70711ca2b06ed43cc3c7a0226731f63548df3977
MD5 2f34e48ca80d6c564314b5a7b7e6d732
BLAKE2b-256 5181dd7980be490a8b4a7c5b3aa8a6922b15b4c951f72a905eba73fe91149285

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ecd2b5f6e9da78ca56d1c70b39402c29b875704204fc738d448d67323498de9
MD5 3693ebf34d3b159e1d78c216507d0887
BLAKE2b-256 0eb474b3bb3244c27ca656b58581ea69f91fc128c6c672aee7221d7aa2c3d4f7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e4ac2aa5c110c7995ad0adf0ffd83a5bdc6822e88cf56eea916bfeb1da240cde
MD5 f638e759f722be907ef4d373f3747f35
BLAKE2b-256 4053a942805f5447a83ce8bb6bcb94194f857843169f220057698d1cd7451cfe

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 80603704983795f9f72c01a30893ad15416b12f7c050a3e7c8e1584b4e19ccd7
MD5 e5d5ee75ba36b089564e80493bac75e4
BLAKE2b-256 ed71e85d5a653c00846cc0d71484d8cd3ff006f1753dc4a974cba9725f548656

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3967613c74fe97fb375244e4f8d29281b15dc99079e308abb7a4e9ca7aa2cdfd
MD5 26cbca0d522561c43b41b0fadbccf60b
BLAKE2b-256 84bb0de4f71eda73afe333cf47503a78bdc56fe156c9d1bb868e928a20aeda9f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 ccdfaedcd8b996916c8fcf136c710f5bcdc2bafd7fcb82e01d5c7dbeeb306aaa
MD5 afb9d289cc7816fd47dccac252f97167
BLAKE2b-256 ff2c3b69d712bc0f4fa0912bd37e16ed9d8e3b792378652d10bd93d13959d3cf

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 797422162d98a037f26a2ac0957df3f36b924cf63c20e7c822229f893d1f4d14
MD5 5af4ed7d68b9178527deba5ce43675c2
BLAKE2b-256 9239020c57d6d176f98234fb621f204b13fa53ef85463fa7ad9e49b04920495f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd472c966979a525c82ec6c4fce075f2227bf570044d5193ae50c441bd25ec07
MD5 e52a247cb5d2ef00f797b68e831f9b41
BLAKE2b-256 d0572942c9e63b31fe79f3136020cbf11ddf450965407d6fe14b008fd7cd1f18

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 757c70fe739e0f2094f291ac1574480898c31fce604245eb3612f24a46ec3da0
MD5 daca7c2fd5d04f7306f90ebbf2472665
BLAKE2b-256 b13a7608c3dc001279998cf50ae3860086098a904c1495d37e384b0504694a62

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ed3bf984a2ccc990538a01375af5d644ea4dc31850d64832fc05fdff9829c383
MD5 9ce40b7e49727a674bf3a5641beb44e1
BLAKE2b-256 924494bf96a84fe13878edfde006e468df2d2718ec6e761c42e9755c3a7b070a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 66fc91d67193f53b3282be7b4cab2f58e2c3c47ce22cb7b02864b869860160d8
MD5 803741ca127dbd8ec88be30b24e463f2
BLAKE2b-256 8f92252fb3205f5505dca24aa79d0f12f128948a4661c7dc5190334441657f4a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0966812a3e080c37fc58fc7b5f296af70e0cc6d563c8aa3727a722450736ac2f
MD5 9031f166b85321182cbf96b5882cc07f
BLAKE2b-256 2c480d6dfa13951a5b35d62fcf884f408dd2b1c93227ac1be2abc4d32a822e8c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9051d16d3d16f5999346ad4b4230ee97a29d7193f7b2620c77aed04da0e91a24
MD5 e63fae7af639ba1bdef5ba5021d8f136
BLAKE2b-256 b4d033e1af7a3403315d5938013a773ce555d5080de788f7699cdd516af184d9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.8-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.8-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b5cd4b1690f3768759713acacbb066c20b702477fd28e09b4352cac6e9f10a92
MD5 b25722f0723d434f6b27c2ae30147fd4
BLAKE2b-256 cf710c8215ac2f075f520d81ba10a1762aa51aedd3914dd2673953b9b4f30a57

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page