Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2024 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.9.9-pp39-pypy39_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.9-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.9-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

pedalboard-0.9.9-pp38-pypy38_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.9-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.9-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.9-pp37-pypy37_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.9-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.9-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.9-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pedalboard-0.9.9-cp312-cp312-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.9.9-cp312-cp312-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.9.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.9-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.9.9-cp312-cp312-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pedalboard-0.9.9-cp312-cp312-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.9-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.9.9-cp311-cp311-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pedalboard-0.9.9-cp311-cp311-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pedalboard-0.9.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.9-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.9.9-cp311-cp311-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.9.9-cp311-cp311-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.9-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.9.9-cp310-cp310-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.9.9-cp310-cp310-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.9.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.9-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.9.9-cp310-cp310-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.9.9-cp310-cp310-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.9-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.9.9-cp39-cp39-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pedalboard-0.9.9-cp39-cp39-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pedalboard-0.9.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.9-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.9.9-cp39-cp39-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.9.9-cp39-cp39-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.9-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.9.9-cp38-cp38-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pedalboard-0.9.9-cp38-cp38-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pedalboard-0.9.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.9-cp38-cp38-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.9.9-cp38-cp38-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.9.9-cp38-cp38-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.9-cp37-cp37m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.9.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.9-cp37-cp37m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.9.9-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.9.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.9-cp36-cp36m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.9.9-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4c890f14e1c4c443307fff2accee5710b67dfe0fbd696008db8e8bd0e7cc4e69
MD5 74259ceac35a184d566d497ddafb2dbf
BLAKE2b-256 98d62af7eab3a06b0834e11fd42f5f283f56dd455548cf740cac329de7f7367a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c607cf92ab66f7f1252daa915a1939b01752c838c9bd688f40029822f994c0f
MD5 0429af2be1a53c70a87e6bc092bba2b6
BLAKE2b-256 1b526c624a545e1bec85067bbdc93fdb907169f74ac4df3c622913d64d8f749a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d163f7d18bc77e8c4a4cb2bc11fb2cd769d36c73932e88bb9c0a2b28f14cfd98
MD5 961458b30e4638c9a1d86cea3beafdeb
BLAKE2b-256 9801b7601bdb682ecc827b9c201c9ecf41fb0ee7870ade9e2b3c3a770590513c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0da3134602d713a21642432c260df89d284559573e6a301772a2f60c69ff6230
MD5 24e32b5be7b309026310f81e5e255ab1
BLAKE2b-256 b004d542509463650ae1052e2726102801672b0250252a09dc041425b8e923b4

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4b143ee79a50ea645fbd71c745a0fb907027f019f69e855e4fc8d4c1041cb862
MD5 9cd638bd91846c501960b783030c5832
BLAKE2b-256 1454abf33186d75c295d5584e4af8094c8c8583fcb6724f2ca7d68c4a91f4c10

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f9998fc60851eb0dd1467855969bd56a03da88721c8d0b103e9f860872011dd2
MD5 3c3de696e292035baf0d8e98eaab9606
BLAKE2b-256 c4ac4ef44b36e0fc12a0c4b65252d131e1f0de9a909822f0b3438db97e572ee7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 81102f372be68653f2df8790582d73a00f5d7e230550c9b54b2bb7cf3182eb34
MD5 841c3a51255e771d652047f554b9d324
BLAKE2b-256 738d9dcaf7134161c29d06a4121ed78ca512cd78a6df47f039dc91e44186fa37

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 145d1a7173cdc2527d076b16345c4921c82ea93f72023d96318e2e3e5c163b6a
MD5 6e498088d5dc2237ce04f5aaf8369cf1
BLAKE2b-256 877e4e494ed87c281e4298dba7de8264a257aa7075304a1611601ab33c7afde8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 303906bbb075561006eeb5cbe9bbbcf634ecf8832227b757c86d820543bf97fc
MD5 86083a896738c4a93778a22af47d9105
BLAKE2b-256 fd25b5350270fd73d9ca4a80205738f9580fc30954d1851e980277c432278acf

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c040bfe51afb51e5ad6757fdd6fdfe7511879bb042316d5f9fd96bea300af176
MD5 351d91548e4415627d3d1c3c7230d67a
BLAKE2b-256 ac6a78199e2153ea0760f50a4f53af8c1951100bcb1c8748a9007735b7afb80a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc3bc3be36c9ee25160f455f1e8e4a59a0efe2107b45e29e39f39771a17f00ea
MD5 d7c4950360f4e5d54d0aa6c0db72bf71
BLAKE2b-256 c44d371deaf2a49d7821d1f63ab1cb96dd3272455a3359d7e53c7cabab11e5fc

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8c39ab3d5c296346fc1977ee3aa277fc56ece285116783ca108c43fb5eb64037
MD5 5ddc52f67d253b961dc1cdd553d72ee7
BLAKE2b-256 650afe1f569fd8870d9f9597f35b56a8c6567661a64129373fc043062dfa9de0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f704ef7d2561d2b156bf5f22949e37d3938425c3ef4a89ef10104a58879635f2
MD5 967fcf8fefea444603d8b2c51869db06
BLAKE2b-256 35d6033905c594a6729cfbcf2ac4ad791f08e5fed81775d7fc523ad6bf384a17

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 74e1e82ff1d4c6abc15655f4dff09db09a1af853b748b777325f9ea4a531d0ca
MD5 df5b2679b3c2c5a9aef88b3aefaa0b21
BLAKE2b-256 bfd919a93d3594f4ef675ad7f3b6b1c02a15fb67635204dae3dcb82fed91e0b0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 18053384d0e5e4c9e3c4ee4d89fb842c94a019d13177a73c2164b54511e0544f
MD5 b1481317bd276be43a325859d67f7a48
BLAKE2b-256 1c66b6234ab126dce12468659baec3718ffb75547811bfb5f171d9767ecab7fa

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e45e69aae9b5e3c74c1a5dfdd5ce8122b5533af20a6c982d6c873cfcd0b95331
MD5 c63b2f73247862bd8d12b03a4214909a
BLAKE2b-256 ed7445ad39fa5de53ba95d4db3537636363ecd499c189df46b485550d2643db9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9df4181f641cd882b8e4514f01381114098e0fce09a88753ffbc5d3a46a26d7c
MD5 e9045099d6f312450fa032ef16a1714c
BLAKE2b-256 b7553376fd09d53147fe209a26f97d39c5a4c275247a6a8ae35172d0ce5048ec

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f6efa5b0a2be4508c338a7ddc1435b6ec30023406902641ffec37f294d7dd94e
MD5 ed8db9300d8d766b5f751f21a2d3705b
BLAKE2b-256 311966c98397130d9f36428f9c6e180d26934ae5e33ce5b33f83e043d906293a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b2d713202a922bf83797835a9490fb7374e75a2e91b378ca1875c58d8d9eeaac
MD5 23ec307f335bc3e1dff50b11f289e8a5
BLAKE2b-256 21b70f33dd2b88302380345674207b07cb3f44de624cadc28ab58a2ff640322f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 f47701eb65838d0b2985cc70af8ba7d6b89f80dfac944572fa2c0889b37cec35
MD5 c38f7a18fd5468d828f5c713a340f517
BLAKE2b-256 354c8bba6c25d48ca52b633de3c7f165fafc2acca4898feecb1b5c379c65da24

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8ecad59b0476ee51ca936f5e9d49a731de0a85d50285057e776af9473d2a3d3f
MD5 58c98e2ba43ac8805edbf8a6c3aae300
BLAKE2b-256 5a47b4332d50392b5706af4d79d11d542c0e20b977eb5d6667205a688aa797a9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8e0db50ceead40decbd1a193fbf5d1802605468c5306635428cb676c707ef27a
MD5 c020229ef6e9b5ee707e38810ec18fe2
BLAKE2b-256 67dc50f5cfc972889ca3df592428916d211f167dcc4a8c93dc576089da607dcb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7558a18597c3665ff987d9eb6d7c32eb7ea92fb636fa7e1090648f66a1bcdc14
MD5 7562a19437b9890163009c717f146375
BLAKE2b-256 144818e5f9173f30d92c415b50dc4f829954581654e6a0d4414559942b50cc4c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee16014a958c152bfe435f56e618c19044a3efaf9ce6d1547e07da43c714e12c
MD5 ff1a6263e33066f0e4f73e41019d2da2
BLAKE2b-256 fab6520aa0b110837d3f69d8b4b56431b8ac9b942b8c162ad15c1461fb23da95

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dbd0c4bad5b2bb10e14a6ebb829f1ded2ea371a464e49f01f585bf28358fbd53
MD5 5a9f870c9ae2ab6b9a666552fcb5d3db
BLAKE2b-256 3ac69cf79f02cc520752cde6d2d030804b51babe2760b3bc9d95431ac8127d51

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 996f7dc45c06fe45793a556ff3d3d2c015afa2189c845976d5535ffc7fc86b51
MD5 0e79369a8c3f00df67ef72281f8641fc
BLAKE2b-256 142ee761642bb207adc3ad3ad8a0bb54cebef3eaac9d13596917a32bef8a8f2c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 29a15b596c00944bfa0cd4ad6bd8f505330304f560f2ccd9daf749b0c6e7ffa2
MD5 c9c42c2528405cae29a6da2bcf7b05c5
BLAKE2b-256 8f3d9a61013d674e3de5fd47bcc03ceb7963501ed27cc82bd88bbe45466ca210

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 bbc3d75e1395940ebd002c176503dcaf3c36539a89d2e1cf1b4bb37d6fc09e8b
MD5 f7255937185ceb4689f3d2387c636587
BLAKE2b-256 7bc2b0555f80d54d708bb834abd547e7a3a3ba1533ecc8dbc5ea90084d1c0004

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 db47f9a1c7b2ec587ed46ae53711b24f3384b6a53e6e439282de1f530cb9b167
MD5 276e19395f0337e5831f9421c243b896
BLAKE2b-256 634f1e325c3cac6a5fe67338fe4436f5fb9be84368b5e4a30e5c7fed82e27735

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5dff39a80a3cc13373ce4bae88d138966490fc24003fed34ba9c6b90c21b4fb1
MD5 288de152f1df471d0b5ce0eede4d2834
BLAKE2b-256 7811885197ea79a1a0020bdbabf0e02a6e1e15597e772dd5cbae62a7d9959ae9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e99c52ee437cee09f93bd90aebd0882942b76124bc3fb116477302ad03ed136a
MD5 4310e8edd6ef51626979b75ad7fb076e
BLAKE2b-256 1aa52431aec2afd20e351c6746427cd4982726d9378917596dd5992d3072c4de

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 695795d972451fe8d15f5b917ddbebf6149a503c1a2c8164e82d6072fcf2b48e
MD5 ad9d21646dfe78b15e994ec9d6187020
BLAKE2b-256 c9feac4196d2838cfedec8b25987cc18fbbc923b8e6f8413fec34a89bbce603a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 148d5418d1bd47e782bfdd4255d71fbc40bba1f36f69e9cf6191926b20fd407b
MD5 8e8a35be3cdb6e09de1e13e2eaa39212
BLAKE2b-256 1bfd3171907c07b96165002598edea3c99f684c8a94b1f6e8dcbcfcc2515b59f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1acd0a2d49685ed5d8edcb324a6541c44b52e337fffa11763b4a84f861796eb6
MD5 8951786b843c4047c2c8574c162fcc39
BLAKE2b-256 e1d089d56561d6daf62f6aa7538414c257448fce546d5fdd24bc30674b7aa4a2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 366223109dc3e66c8d4628db310b738efbc727f563069834383ba93543ddd41a
MD5 1d80c244374c8c3447a8154f14218f35
BLAKE2b-256 0e6e9b8774cbfe12525b013ba478a092ca0d6874d2818e3db698bf5df6980de7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 77aeff13bf1b48850e41317f9f6fc2430920f3a538ae9f909fcec90cf4f32021
MD5 605ba35348b040a9987fe4e58509c869
BLAKE2b-256 a54f9904e3887ccd34a8360e3a3d750f6056ae2b78b9fad0017a9a2d81d86a2c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 69de63c184e6e27f06dc71f54fae79e8f6fb33cd2bc4dc9399a21b5330fd8a26
MD5 384d0bbf77abed2d2c77e213c4a7decc
BLAKE2b-256 6566aaf1b19346b05196836caba0489d17521a2f269bc1a945d5aa61486e7895

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fbea7a6f99ea03ccfb4d7fe7ca909bd8c9c4fee0ffddf56d4f561c946ee61e07
MD5 03fe4185b55710dc079106327416be78
BLAKE2b-256 75eefd032fe8d3b9a0232bbb618038beffbdd168639951af09e9d5dba4dbf3a6

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ffafd61121c3bab34600bbaa8bb48d9282c7cd4657bfc9d013deb409d24c2dd0
MD5 ebad17a1f5a8a7f24e1bcf8edcdc498f
BLAKE2b-256 10f62381d8cc5f0e9920a8cd86c726013cbb2b2eb5f4850fe2a45fe64bf83d70

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19e1c6cd35d8954c455dc0d7901fad670afce5c385a14504adb8610ee2c60863
MD5 9a8c7ac5478118618abc0bb244f80647
BLAKE2b-256 7b8a9c8fb949168c0ae69f092dcb7fe7613294a82698c30493978d0b2b55838a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4523c322710852d6aeb2ba96e36c6e0e59d4cc815f4224f9764b0c1905373cab
MD5 06147b9689e116799e3bd3f852f332c3
BLAKE2b-256 29c1e0f8bfaa9aef2e5b08c797c913ce7e522ec67050f87a8e319ba4dfee3456

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b0c045871e5aa80ddd54bbe21aee838588a5e8b60a02f670d774a7167ab93e1d
MD5 23a666d4bc50a2490694462cee108703
BLAKE2b-256 d8d5b69d121bb4b8891a249f9811be0f11a81243daaaab030a5cba842359a79c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 11844ce781c48f9282ced497c2a7d5415488f40c5a98aa6b8da15818629425c6
MD5 862ed91eb131b13b1a1eb89038c01da9
BLAKE2b-256 d098c7e9194bfea2e0a8817bdbbcd85f172310e835350c3783428a80ff18ea20

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 9add28ab77e85be4447b3d98694b34a9e02715dfafff201fb4453b75b2625aba
MD5 15c285667de127d982f414f5e23adfc6
BLAKE2b-256 090487f9ac73349ec6b90c238038cdc38372aa496b243a7c18a49c79b9a4de9d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b9b706d355de7a53c09588c296cd099c4d55c1f5ce42385a330927b0e61d3353
MD5 e7bed88aa0f1d769a043f60acf43ef72
BLAKE2b-256 a7c0dc7a63c439f56f75e8c5735a4e4e68f8c535a4ec560c128bb8a48933f40b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1593429a3e9df64fb14617cf94cad097f56d9a7dd5b3607a80f2a3babbdf5266
MD5 9f96e62b44ce9e7a862f13262e4a7563
BLAKE2b-256 4407a14a1a6fd55d9d890f50e891663b16a54b55394a6687c484149420997dcc

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 995f66a6b2fd164edb9992aeacf8d068df35602f9b75994f709d8ebe7a4b2e13
MD5 2b7e0905002ebb0ab932256686786941
BLAKE2b-256 cb18fcff5150fd81ccf84d38b8561ca226d3157d9084ae96025480e0ea2fa4b6

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5a00b17622da33c3176fe231454f16ac0301b3fb91802f5cc34769cc3b75d8b
MD5 ede61f46b1c8537e464c4f9e184a0568
BLAKE2b-256 3e379d9689a1424582240f46f532b35cf035e4b32290295c9ade21fba324777c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a9ab1d4a3e5218d3191d7de691b9d03f0480289a22f5462aadc6d599a9adb01b
MD5 6a90b2258973e1b61c207996d2120fa7
BLAKE2b-256 c886a3a61db3250f6c773f62cd0330403620760f734e4cc05af59c3ad17f4d07

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d31a1b49d87f1c206efe3dec5c4cccde52433fc5ac28d2d4b08d18d48ed5e79b
MD5 d7005a3c30bd6768e0aaf88798e3bc05
BLAKE2b-256 39a1dcfb6737ecc8ca7e6b0d9fae92d342c2580a9f0fe832aeba33cecf058ea1

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 79d77f26e0529510fe301c61f944842934d610a04e39bb161166b799c51013c0
MD5 d097d08db00e47779f5e5c3fc93c0565
BLAKE2b-256 2ce1f0be26dc6ef6f3a28ee4e05ca23754b580c94b94ef1d4adf0ec543fc9530

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 0bb64fc92bdf265ae162c29ed275560d6b4bb7cafd9916f27ca68cd9f865993a
MD5 95b66959f6bda933ba1693eb573aacd3
BLAKE2b-256 2f28d2b170444b290d2319bc90649fe17ccaa3b919e866242eb29d5e2f5ce122

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d9ff75eebc69b15dde56691691e58b83c22bb7973dae7a855cca00b5ed2c107b
MD5 b65726cce9689fc2dac151c402890a84
BLAKE2b-256 e7936ed857598c34a53afb42d5cb85efb6553245b26dddc84e0fb79a87c466c5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5b024aeb81c1538d8c9096e58990bac1175f10aaa411c124383a45c5331e788
MD5 51eac786c0f4d2d83db8f4c532aed46b
BLAKE2b-256 e139e9e7e85525ae02212fe64e6f98cc60a1967393fe53354b1530ae36c2cc25

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cfc106de93fcd1b9ef01b0e0d7aa4cbb933d5f93bd58890a97370e1777ec1bfb
MD5 16894834151095e96c1abdc7dcc41246
BLAKE2b-256 65b3639fa9b936fd8cd058b787ceaf1d5c6585bf89a9051601895d1a56249cfb

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 391b509dcbb29e874f215ba8f0b8034c4b547103bf6464fa3189dc0ea33be695
MD5 f0be27e91d4e4d0d41008c2b4bc13904
BLAKE2b-256 3685c78fedbdf49722c4b7a6b61d3663d9afbb4fa9bb9ef5c77a022976056e12

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 7cc9a4f780f3215236dfe06dff4264617ecc71a4b53087cd9c3dd2c5d1469698
MD5 6cfe2101bf800f0e308c443fbab328ee
BLAKE2b-256 3779437dcb8cda0c077978be78fada55a8544249c89f18f2c68939dd41f82c5f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 975bba5f05c205bf7e151ec7ae8946e234c422a5265449175c505d0428bbe860
MD5 0d4496977c8674b02586c0ad33480eda
BLAKE2b-256 319fb9c6b148842f69be3f61e96465145f2bef84a21fd2016e343ac25a8f046c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fa29074d5c8a7fe7e67c1e49bf1c9852cf8f7520ba75743371c739399d8cf737
MD5 7c9b85eb5c5f421caa769eaf88990bb8
BLAKE2b-256 269ab278f550ee4e94dd4c9e03b4cbd3ae3a0ae40aa9f32ec80111a80f051bf2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.9-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.9-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0a1f5e581d6d02fbd816db09b364bc9f6ec6381a3308944144986a5acc3691a3
MD5 ed0cb8b1381bd2f302573d8d972a1fb6
BLAKE2b-256 96066f97a9268fa302548f33f77250cb3c1860b5a5a3c75b25e7637cd60425d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page