Skip to main content

pentapy: A toolbox for pentadiagonal matrizes.

Project description

Welcome to pentapy

status DOI PyPI version Build Status Coverage Status Documentation Status Code style: black

pentapy-LOGO

Purpose

pentapy is a toolbox to deal with pentadiagonal matrices in Python.

Pentadiagonal linear equation systems arise in many areas of science and engineering: e.g. when solving differential equations, in interpolation problems, or in numerical schemes like finite difference.

Installation

The package can be installed via pip. On Windows you can install WinPython to get Python and pip running.

pip install pentapy

There are pre-built wheels for Linux, MacOS and Windows for most Python versions.

To get the scipy solvers running, you have to install scipy or you can use the following extra argument:

pip install pentapy[all]

Instead of "all" you can also typ "scipy" or "umfpack" to get one of these specific packages.

Citation

If you use pentapy in your publication, please cite it:

Müller, (2019). pentapy: A Python toolbox for pentadiagonal linear systems. Journal of Open Source Software, 4(42), 1759, https://doi.org/10.21105/joss.01759

To cite a certain release, have a look at the Zenodo site: https://doi.org/10.5281/zenodo.2587158

References

The solver is based on the algorithms PTRANS-I and PTRANS-II presented by Askar et al. 2015.

Documentation and Examples

You can find the documentation under https://pentapy.readthedocs.org.

Solving a pentadiagonal linear equation system

This is an example of how to solve a LES with a pentadiagonal matrix.

import numpy as np
import pentapy as pp

size = 1000
# create a flattened pentadiagonal matrix
M_flat = (np.random.random((5, size)) - 0.5) * 1e-5
V = np.random.random(size) * 1e5
# solve the LES with M_flat as row-wise flattened matrix
X = pp.solve(M_flat, V, is_flat=True)

# create the corresponding matrix for checking
M = pp.create_full(M_flat, col_wise=False)
# calculate the error
print(np.max(np.abs(np.dot(M, X) - V)))

This should give something like:

4.257890395820141e-08

Performance

In the following a couple of solvers for pentadiagonal systems are compared:

Performance

The implementations of pentapy are almost one order of magnitude faster than the scipy algorithms for banded or sparse matrices.

The performance plot was created with perfplot. Have a look at the script: examples/03_perform_simple.py.

Requirements:

Optional

Contact

You can contact us via info@geostat-framework.org.

License

MIT © 2019 - 2023

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pentapy-1.3.0.tar.gz (10.4 kB view details)

Uploaded Source

Built Distributions

pentapy-1.3.0-cp312-cp312-win_amd64.whl (85.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

pentapy-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (502.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pentapy-1.3.0-cp312-cp312-macosx_11_0_arm64.whl (88.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pentapy-1.3.0-cp312-cp312-macosx_10_9_x86_64.whl (94.7 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pentapy-1.3.0-cp312-cp312-macosx_10_9_universal2.whl (174.8 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

pentapy-1.3.0-cp311-cp311-win_amd64.whl (84.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

pentapy-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (510.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pentapy-1.3.0-cp311-cp311-macosx_11_0_arm64.whl (88.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pentapy-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl (94.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pentapy-1.3.0-cp311-cp311-macosx_10_9_universal2.whl (173.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

pentapy-1.3.0-cp310-cp310-win_amd64.whl (84.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

pentapy-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (474.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pentapy-1.3.0-cp310-cp310-macosx_11_0_arm64.whl (88.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pentapy-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl (94.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pentapy-1.3.0-cp310-cp310-macosx_10_9_universal2.whl (174.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pentapy-1.3.0-cp39-cp39-win_amd64.whl (85.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

pentapy-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (477.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pentapy-1.3.0-cp39-cp39-macosx_11_0_arm64.whl (89.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pentapy-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl (95.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pentapy-1.3.0-cp39-cp39-macosx_10_9_universal2.whl (175.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pentapy-1.3.0-cp38-cp38-win_amd64.whl (85.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

pentapy-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (484.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pentapy-1.3.0-cp38-cp38-macosx_11_0_arm64.whl (88.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pentapy-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl (94.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pentapy-1.3.0-cp38-cp38-macosx_10_9_universal2.whl (174.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file pentapy-1.3.0.tar.gz.

File metadata

  • Download URL: pentapy-1.3.0.tar.gz
  • Upload date:
  • Size: 10.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pentapy-1.3.0.tar.gz
Algorithm Hash digest
SHA256 46e1d9b13bb78d51f754f30bfc819ed784346205f10d2a5b44b52b711a7b6e26
MD5 79bb1c275d787794ca61ba03410a612a
BLAKE2b-256 e745aca46b729a0857b52e1d52c296b2637cdb6de96398d9f0496c9a73aa6b25

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pentapy-1.3.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 85.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pentapy-1.3.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ddb3f7ceb0f60b2c52d13c46604ffb23cdd1a1ea704f900dbf37384b3b9796c8
MD5 2f5507baf456bfb6fdcb75cb83c41cd8
BLAKE2b-256 f0d13b3e5c050973e4d382c7158f79d0f3cabc75e09389bd37d8754a9fe16ce6

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3deef1347b5342825bc5e4685e59ae6c90930b1812b3b1025e4e42c7a359cf86
MD5 8386dd3aa8e21daeaf7c508be270c549
BLAKE2b-256 b349c67327f29b65b1022f92b2b1b849aa26928c32af1187b2d26b542fd6aa8a

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 81c5d77e9cb43faddda149587ff44a4c4f321dedb4596cb7a4d57eabc270a64b
MD5 04a3e376912f86e1c5c6b46c7a8c5855
BLAKE2b-256 cf957534c97a84fd39ea7c8c1b7074c43ad6fa5f358d125708b1750d15c7ee8e

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1ac78bbde496cdb98ed04e16ae138f9cd46fec806e083daf8361864c3feb7b4a
MD5 bd25073a018e87b0473217181bd5732f
BLAKE2b-256 063722d04f2e5e57ecc8c41e51b3149b039a0a35875f97a1e46aea57802302a4

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e7b34d08780d562d877e571fc65bf53ddd431ca4a6a8a503d0a68f42c27cf1fe
MD5 7655aa2445bf80849c3acf091ffdbf3f
BLAKE2b-256 98cda42e20b8ca23dbbb0f30f63288520e6e9ca01b7152318c80f2eb6432dcdd

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pentapy-1.3.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 84.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pentapy-1.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ff73775ac0002f6f062bab629db0b3b07ec09c40a6b38e80c169059876a97ff3
MD5 be1b84f8b0f46352e27a8dc815d461cf
BLAKE2b-256 19e50272502f99a78f3f23ea232fc0475424991abbe33a47d88d36eeeb81c0a1

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f63dbd36c09f0b8aa0f4f5f51beadc9d8759502b97407e426d1636d7ce2a1ef8
MD5 539f73584f0e0c6d53c49413095d6d73
BLAKE2b-256 6dabf6bb8fa2b44fc1d8ab4c4c8286e5ccc68fc9e2ca2aa6fcd43a8f2a939111

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0259635a88569939137e676f6ae5a45b580529c956d2d7a1e8e2affffa591e09
MD5 390d7bdd86764b138946ab47adaacb39
BLAKE2b-256 d6240d86371cb43e1fe69293256485463b1f1172b8709e1caed1bdb8e315b4ce

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4b120afcc195c530d6cbfffe81cc820c3f8c6bfc689753e7ba2c1bafcbb5b8fd
MD5 859b9b8085461c6239638709ca3bef0e
BLAKE2b-256 de1fbc947fa096124727067ff8d33a81fcbe9339df22530bc5599499b223081a

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 37b147100e3ad143c4c309ea21287cdf1a9621d3db4c6720216ec43d5d6608db
MD5 ecef869cc463a19e8f7266aded39e9d1
BLAKE2b-256 cae29847fc1ff9b41c8a4b8d9f8975f8be671c77129759c31ea8f49e1f03e729

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pentapy-1.3.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 84.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pentapy-1.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 aeb91e415ab3db0265b80b8c343b75acbf5f36893322e668a19307bd044fb968
MD5 0a42acd6943315ecc35fa5732f2d0952
BLAKE2b-256 2b0a860bbd84f6f5e9a3bfa4d7a283ae2082d68d2d6a027c2ac24449ac8cf6d0

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a30065f8c3847386dc34de5d5ea83dad0152cfdd95fab8b8f9c4ec78630983eb
MD5 1d9416137dc759407d55b7e44d2aa45b
BLAKE2b-256 287fd3fb866714dfed9e7ca3f6033502118e385da3bc1faaacbc39b4f61d85a2

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b8b8d3dc78ae7e526f32fbd631cfdbc4499c46eda1241bfd74c17689dcaaf3e7
MD5 a0e8334b9a9ce075a7f987f4c08171da
BLAKE2b-256 0cd85f70c1880a45ff7089c5938c8fd484d75de280eee2c16b0f3013d881a7d2

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b26b1e536023329d520490ff999fc7c38b2d247fd706d8c393b5f01c0263d9d0
MD5 005c3c5e7c9f94bcc05a7e8a09802671
BLAKE2b-256 20c5812f4f4fac703ff1499f6da0f4d45129988d4c9537e65705d25b87bdf2d7

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9eb6776f153ab235c2728993ff994ce11cd198bb6d8b533355de25f3c623662f
MD5 d544c243e9867ef90f8073a5a5974648
BLAKE2b-256 4c350818e4948e243bcb41e207e38e3948f0a9491cfd25b3f9802980fca4af78

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pentapy-1.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 85.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pentapy-1.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 aba4bbb264c4317ce9cc30cadbd5389b7002d6a442b42ed9e239300cc56434f7
MD5 1a4226f33b5e382c04183b055d6b29e9
BLAKE2b-256 7b2f6b0fc47065d18cb7dba3a70bcd18571343f5f7e8d483557b289500d90936

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 46363459ead194d13519204d62463273f2db16e6baf418131e74a377fa6cfccf
MD5 10b9553edfa91da3c8b21889d91a02c8
BLAKE2b-256 17f86eada520183773a551d9f4629793153506330f7330c2fae0379a0a29051d

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1bd1af071af2febf2491e71e796061c48ddc8675cdd827907c18600bbcb2e7bb
MD5 01aef5d9105b35dc83bfe08089622753
BLAKE2b-256 f454e7381dc0cdeb873082305cab2e2cafdd0b22d58ce11db339bf6c5285b7ec

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ea1adaea9afdb18ff577ba587065b67794cd5cc4e4f13a45474917173ab952db
MD5 c68a2e168a748111ac6f81124510a8e3
BLAKE2b-256 c1de5dae3452ad347706e757d17a7b5c3d0bd06becc6dc797be561d0f9498e8c

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 50ee2c428fc05841391e072062411ebf95c4d9a1a15058141d7bc1bbfa967402
MD5 4b5fa02ccbca9a8f00e3f507243fdcd2
BLAKE2b-256 7c460f081fe538c99dab095f2f8d1fe20e7cf5c2c747c3262e1919640b0d4344

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pentapy-1.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 85.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pentapy-1.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f008e131c1347da2cdd3e60039e269585759202d45d44214c12e210fe7ff48c0
MD5 b344f3b277b078354f2087ba34efa312
BLAKE2b-256 a4c27c127d29608b9e691553bc0b72e421bb84f175e9424c5aa03c0995f1707d

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d80a6cb7f65d423e2e50f3012f4b510dbd569b8c87b6ec45447953c8025f0762
MD5 0cc59a597795027eed606f83419f5cb9
BLAKE2b-256 2239f889c8db80b22c88db203aeee0a6c154992710bcadfcf8ba81cb3de08e17

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 18fa7c686329ec5415500510be943756955d2629f5f47c4028fde3ea892fb507
MD5 8f55a0f0f9d923434ab53dca52bc5711
BLAKE2b-256 f4daba54369d2dd85e5c26680f69173640734d65289197b2b9960e8fdf80c893

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3dd5863c84769f3de02c68cc6f8f482b1e0d9ba7637bb4042e704341bfa7ddef
MD5 fe437a68f16db95556fb22382b6b0458
BLAKE2b-256 294314b40ca93ce3ace71dfb93b209c33d0538c9fc71d8c6fdfa0d6535250814

See more details on using hashes here.

Provenance

File details

Details for the file pentapy-1.3.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pentapy-1.3.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 663e3525c815787c2cf9d0fbbc54567a6b9fa2c52816abce24bc5f43ceab8590
MD5 3dce1eb3798f4e8934448ce18260540c
BLAKE2b-256 4eb47f2db7d8d3376065e2f0ee1367d375807082cd6d1a351d98111d55f21260

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page