Skip to main content

Send performance metrics about Python code to Statsd

Project description

perfmetrics

The perfmetrics package provides a simple way to add software performance metrics to Python libraries and applications. Use perfmetrics to find the true bottlenecks in a production application.

The perfmetrics package is a client of the Statsd daemon by Etsy, which is in turn a client of Graphite (specifically, the Carbon daemon). Because the perfmetrics package sends UDP packets to Statsd, perfmetrics adds no I/O delays to applications and little CPU overhead. It can work equally well in threaded (synchronous) or event-driven (asynchronous) software.

Complete documentation is hosted at https://perfmetrics.readthedocs.io

Latest release Supported Python versions CI Build Status Code Coverage Documentation Status

Usage

Use the @metric and @metricmethod decorators to wrap functions and methods that should send timing and call statistics to Statsd. Add the decorators to any function or method that could be a bottleneck, including library functions.

Sample:

from perfmetrics import metric
from perfmetrics import metricmethod

@metric
def myfunction():
    """Do something that might be expensive"""

class MyClass(object):
    @metricmethod
    def mymethod(self):
        """Do some other possibly expensive thing"""

Next, tell perfmetrics how to connect to Statsd. (Until you do, the decorators have no effect.) Ideally, either your application should read the Statsd URI from a configuration file at startup time, or you should set the STATSD_URI environment variable. The example below uses a hard-coded URI:

from perfmetrics import set_statsd_client
set_statsd_client('statsd://localhost:8125')

for i in xrange(1000):
    myfunction()
    MyClass().mymethod()

If you run that code, it will fire 2000 UDP packets at port 8125. However, unless you have already installed Graphite and Statsd, all of those packets will be ignored and dropped. Dropping is a good thing: you don’t want your production application to fail or slow down just because your performance monitoring system is stopped or not working.

Install Graphite and Statsd to receive and graph the metrics. One good way to install them is the graphite_buildout example at github, which installs Graphite and Statsd in a custom location without root access.

Pyramid and WSGI

If you have a Pyramid app, you can set the statsd_uri for each request by including perfmetrics in your configuration:

config = Configuration(...)
config.include('perfmetrics')

Also add a statsd_uri setting such as statsd://localhost:8125. Once configured, the perfmetrics tween will set up a Statsd client for the duration of each request. This is especially useful if you run multiple apps in one Python interpreter and you want a different statsd_uri for each app.

Similar functionality exists for WSGI apps. Add the app to your Paste Deploy pipeline:

[statsd]
use = egg:perfmetrics#statsd
statsd_uri = statsd://localhost:8125

[pipeline:main]
pipeline =
    statsd
    egg:myapp#myentrypoint

Threading

While most programs send metrics from any thread to a single global Statsd server, some programs need to use a different Statsd server for each thread. If you only need a global Statsd server, use the set_statsd_client function at application startup. If you need to use a different Statsd server for each thread, use the statsd_client_stack object in each thread. Use the push, pop, and clear methods.

Graphite Tips

Graphite stores each metric as a time series with multiple resolutions. The sample graphite_buildout stores 10 second resolution for 48 hours, 1 hour resolution for 31 days, and 1 day resolution for 5 years. To produce a coarse grained value from a fine grained value, Graphite computes the mean value (average) for each time span.

Because Graphite computes mean values implicitly, the most sensible way to treat counters in Graphite is as a “hits per second” value. That way, a graph can produce correct results no matter which resolution level it uses.

Treating counters as hits per second has unfortunate consequences, however. If some metric sees a 1000 hit spike in one second, then falls to zero for at least 9 seconds, the Graphite chart for that metric will show a spike of 100, not 1000, since Graphite receives metrics every 10 seconds and the spike looks to Graphite like 100 hits per second over a 10 second period.

If you want your graph to show 1000 hits rather than 100 hits per second, apply the Graphite hitcount() function, using a resolution of 10 seconds or more. The hitcount function converts per-second values to approximate raw hit counts. Be sure to provide a resolution value large enough to be represented by at least one pixel width on the resulting graph, otherwise Graphite will compute averages of hit counts and produce a confusing graph.

It usually makes sense to treat null values in Graphite as zero, though that is not the default; by default, Graphite draws nothing for null values. You can turn on that option for each graph.

CHANGES

4.1.0 (2024-06-11)

  • Add support for Python 3.13.

  • Drop support for Python 3.7.

  • Drop support for Manylinux 2010 wheels.

4.0.0 (2023-06-22)

  • Drop support for obsolete Python versions, including Python 2.7 and 3.6.

  • Add support for Python 3.12.

3.3.0 (2022-09-25)

  • Stop accidentally building manylinux wheels with unsafe math optimizations.

  • Add support for Python 3.11.

NOTE: This will be the last major release to support legacy versions of Python such as 2.7 and 3.6. Some such legacy versions may not have binary wheels published for this release.

3.2.0.post0 (2021-09-28)

  • Add Windows wheels for 3.9 and 3.10.

3.2.0 (2021-09-28)

  • Add support for Python 3.10.

  • Drop support for Python 3.5.

  • Add aarch64 binary wheels.

3.1.0 (2021-02-04)

  • Add support for Python 3.8 and 3.9.

  • Move to GitHub Actions from Travis CI.

  • Support PyHamcrest 1.10 and later. See issue 26.

  • The FakeStatsDClient for testing is now always true whether or not any observations have been seen, like the normal clients. See issue.

  • Add support for StatsD sets, counters of unique events. See PR 30.

3.0.0 (2019-09-03)

  • Drop support for EOL Python 2.6, 3.2, 3.3 and 3.4.

  • Add support for Python 3.5, 3.6, and 3.7.

  • Compile the performance-sensitive parts with Cython, leading to a 10-30% speed improvement. See https://github.com/zodb/perfmetrics/issues/17.

  • Caution: Metric names are enforced to be native strings (as a result of Cython compilation); they’ve always had to be ASCII-only but previously Unicode was allowed on Python 2. This is usually automatically the case when used as a decorator. On Python 2 using from __future__ import unicode_literals can cause problems (raising TypeError) when manually constructing Metric objects. A quick workaround is to set the environment variable PERFMETRICS_PURE_PYTHON before importing perfmetrics.

  • Make decorated functions and methods configurable at runtime, not just compile time. See https://github.com/zodb/perfmetrics/issues/11.

  • Include support for testing applications instrumented with perfmetrics in perfmetrics.testing. This was previously released externally as nti.fakestatsd. See https://github.com/zodb/perfmetrics/issues/9.

  • Read the PERFMETRICS_DISABLE_DECORATOR environment variable when perfmetrics is imported, and if it is set, make the decorators @metric, @metricmethod, @Metric(...) and @MetricMod(...) return the function unchanged. This can be helpful for certain kinds of introspection tests. See https://github.com/zodb/perfmetrics/issues/15

2.0 (2013-12-10)

  • Added the @MetricMod decorator, which changes the name of metrics in a given context. For example, @MetricMod('xyz.%s') adds a prefix.

  • Removed the “gauge suffix” feature. It was unnecessarily confusing.

  • Timing metrics produced by @metric, @metricmethod, and @Metric now have a “.t” suffix by default to avoid naming conflicts.

1.0 (2012-10-09)

  • Added ‘perfmetrics.tween’ and ‘perfmetrics.wsgi’ stats for measuring request timing and counts.

0.9.5 (2012-09-22)

  • Added an optional Pyramid tween and a similar WSGI filter app that sets up the Statsd client for each request.

0.9.4 (2012-09-08)

  • Optimized the use of reduced sample rates.

0.9.3 (2012-09-08)

  • Support the STATSD_URI environment variable.

0.9.2 (2012-09-01)

  • Metric can now be used as either a decorator or a context manager.

  • Made the signature of StatsdClient more like James Socol’s StatsClient.

0.9.1 (2012-09-01)

  • Fixed package metadata.

0.9 (2012-08-31)

  • Initial release.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

perfmetrics-4.1.0.tar.gz (141.9 kB view details)

Uploaded Source

Built Distributions

perfmetrics-4.1.0-cp313-cp313-musllinux_1_1_x86_64.whl (441.9 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.1+ x86-64

perfmetrics-4.1.0-cp313-cp313-musllinux_1_1_aarch64.whl (436.9 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.1+ ARM64

perfmetrics-4.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl (451.3 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ s390x

perfmetrics-4.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (448.6 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ppc64le

perfmetrics-4.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (439.4 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

perfmetrics-4.1.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (444.3 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

perfmetrics-4.1.0-cp313-cp313-macosx_10_9_universal2.whl (232.9 kB view details)

Uploaded CPython 3.13 macOS 10.9+ universal2 (ARM64, x86-64)

perfmetrics-4.1.0-cp312-cp312-win_amd64.whl (177.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

perfmetrics-4.1.0-cp312-cp312-musllinux_1_1_x86_64.whl (448.0 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

perfmetrics-4.1.0-cp312-cp312-musllinux_1_1_aarch64.whl (443.0 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

perfmetrics-4.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (454.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

perfmetrics-4.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (451.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

perfmetrics-4.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (442.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

perfmetrics-4.1.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (448.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

perfmetrics-4.1.0-cp312-cp312-macosx_10_9_universal2.whl (234.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

perfmetrics-4.1.0-cp311-cp311-win_amd64.whl (176.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

perfmetrics-4.1.0-cp311-cp311-musllinux_1_1_x86_64.whl (437.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

perfmetrics-4.1.0-cp311-cp311-musllinux_1_1_aarch64.whl (436.1 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

perfmetrics-4.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (436.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

perfmetrics-4.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (447.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

perfmetrics-4.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (452.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

perfmetrics-4.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (435.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

perfmetrics-4.1.0-cp311-cp311-macosx_10_9_universal2.whl (232.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

perfmetrics-4.1.0-cp310-cp310-win_amd64.whl (176.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

perfmetrics-4.1.0-cp310-cp310-musllinux_1_1_x86_64.whl (416.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

perfmetrics-4.1.0-cp310-cp310-musllinux_1_1_aarch64.whl (414.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

perfmetrics-4.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (409.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

perfmetrics-4.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (419.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

perfmetrics-4.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (425.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

perfmetrics-4.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (406.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

perfmetrics-4.1.0-cp310-cp310-macosx_10_9_universal2.whl (232.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

perfmetrics-4.1.0-cp39-cp39-win_amd64.whl (176.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

perfmetrics-4.1.0-cp39-cp39-win32.whl (170.8 kB view details)

Uploaded CPython 3.9 Windows x86

perfmetrics-4.1.0-cp39-cp39-musllinux_1_1_x86_64.whl (416.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

perfmetrics-4.1.0-cp39-cp39-musllinux_1_1_aarch64.whl (414.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

perfmetrics-4.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (410.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

perfmetrics-4.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (420.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

perfmetrics-4.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (427.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

perfmetrics-4.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (407.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

perfmetrics-4.1.0-cp38-cp38-win_amd64.whl (176.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

perfmetrics-4.1.0-cp38-cp38-win32.whl (170.8 kB view details)

Uploaded CPython 3.8 Windows x86

perfmetrics-4.1.0-cp38-cp38-musllinux_1_1_x86_64.whl (429.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

perfmetrics-4.1.0-cp38-cp38-musllinux_1_1_aarch64.whl (428.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

perfmetrics-4.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (416.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

perfmetrics-4.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (427.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

perfmetrics-4.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (431.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

perfmetrics-4.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (413.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

perfmetrics-4.1.0-cp37-cp37m-win_amd64.whl (175.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

perfmetrics-4.1.0-cp37-cp37m-win32.whl (170.1 kB view details)

Uploaded CPython 3.7m Windows x86

File details

Details for the file perfmetrics-4.1.0.tar.gz.

File metadata

  • Download URL: perfmetrics-4.1.0.tar.gz
  • Upload date:
  • Size: 141.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for perfmetrics-4.1.0.tar.gz
Algorithm Hash digest
SHA256 495e0eee5681961ec8b2fce9eafa372c90919d9a57cbe7ca0fca7b52a89f5519
MD5 a1a1df5b3e2183f0e462713aca327272
BLAKE2b-256 bb26bd5e2ac556e7eb1a9d3bc82599b21445ca27318a3d1ad891797030f497a1

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp313-cp313-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp313-cp313-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bc08822ab37e2393f58407a8d4c5dee99eda328fc0443b08333cca8f65de553b
MD5 4d18138805684fbe000f243ab1979c56
BLAKE2b-256 2bbf48eac3831b075dea647de387859929e0ba1efbfdf16cd6241cf22c0e687c

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp313-cp313-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp313-cp313-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a31838d0f63b93327d61cfe84ca43ee23a607bf8015c4997697ff846ce7525c7
MD5 dcd44262371f1b9aa32cc1a985955b9a
BLAKE2b-256 5f504c6d60955d477fc992980b811c8d38b1dff50405ff10989fae5809b8aafe

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 95912530cbf66eed308d754e545c54df354ecc60a09702533796ad60edb9a1d9
MD5 c703002588f6af019f1cd33d07eb34b9
BLAKE2b-256 bc8eddbaae41d951a482bf31345e576fde23ba6a1c778b999ab1b31426da5169

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e2d7406e808fec5f980544077dad63382fecab57586db5acf44045c86de2821c
MD5 0bbcc19d97eef21d44b9cf1b4dc72eac
BLAKE2b-256 9092ec611974798040e959862b8bb1ccf1dbfa446fb756ad0d54b4cdb7c24d16

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c4495ff3b889946dc753a6f77eda2d1d7c888c7b349384ae4edd87163462e9bd
MD5 81ef61fabf7ef8d876a5c841576f487c
BLAKE2b-256 747cd55cf48f84707eb5f2956092fbb52f4a950b07fa2ce90920575fd8dcf6c9

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 689c7e587c003aa9f256b684c1709f042e32483debfee87dec7997f50738d02a
MD5 4f37099fe180b9aa92f65244f4a2db68
BLAKE2b-256 82855d425bb92897902d9931029460b4681b5fed9e618b6ac1249f936415d7c7

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp313-cp313-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp313-cp313-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 25bbb8b0e48e4dff888a7871c658c49b071089f26a77c5915fff7280b7e82a88
MD5 31368d0c0f223fd9704a4644f1311001
BLAKE2b-256 3747763f86ba303ae53c33a1d48d3fa56575897e364e291faf5c6c0499f32a28

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b75d99cccae4e1e92545be602b0450580e4aa1711615169d0cd69d71ae6f0b2c
MD5 1cd7e1e4499a9be7c1d11d4998c1b734
BLAKE2b-256 54b4650a4cfc7f1991d7a7552a265f113a02d6703333319c34166319c08689df

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 896d8caf7d8f4a6d9ec16fbadd2dd51f7c155d6199b9c638a1bac5987fae3d33
MD5 4006dd6b8e7c4985bb72c6e0691a3b2e
BLAKE2b-256 70a7156745db1bf9dbec9489e539cf7c18883d70767b49ff37917f8a2403907c

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 937dfbba3ac30aa5aa6040731ec67f7da0af59a6fd5148c68f8f43baa9b0a31c
MD5 bd4d33f5288920be0ea565f2fd809db0
BLAKE2b-256 284b335a30a14f6d0d963ea23cfe5306db69aa2ab61bb59d0d2e8568982a8139

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 74fc996b4bc52f2f502f7a6f29d6d30ad9b3a6338bc99cccb42a96e4b9d5fba4
MD5 351d6fc4f3e2bc920ac2d4e265acea81
BLAKE2b-256 f6c401a78860249fd8a61617a7b669537b063bcbb0d096ff47eced4c9740c577

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 fc80cde10398f52f41491be261cf3361350b4b77ab4ebbdee1b5e85a3628922b
MD5 6f7543916de41b9d7c230d2800606319
BLAKE2b-256 e9fdd05f36916f91c8378d32506daa063665d525193d0c7c752fccf63529b283

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5fa39cf2406cd0414eb2d11587739daa6a7f684e730b4ed7c47a496e050cf742
MD5 a434bea341c8e253c74585ac5494a0b9
BLAKE2b-256 2639bb8e264b9401cadf3647de9de8336ea549131dedc00d40ba8452a0db934e

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 37ee828552f9d5a2e94c525e294aaef2d33a3eef628c452baa81c0ade60f1d63
MD5 09b0333d9e96fd4fb920db35f5633ab9
BLAKE2b-256 3e9860b9f354c0840af60b26d242557b6428641ef759af02a2c9081dd87534ee

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4ffb0d2ca1fd614bf6832c2fe7c0e3d1a9b8f57215f498206801470c490bcb4d
MD5 3af0d185e280545685b796deaf219ca6
BLAKE2b-256 e5471eb1519bc8377c9f0bc42d2aee06add7ed56a54dd3a655f05d8815bf6dea

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9a70d2faf3cbd27c1d98cdcffa90a0eaa595f77782afdc4ac64c8821d5e74035
MD5 536375ba04d1ddc60de370c3fd068bd1
BLAKE2b-256 e0d96fc3a96556156fcf44300f3dca5e8f9ea2ea90375712b90c28431b2069e6

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1f88c703423bb1fc1927e1b5f395d7ed985edc3776d81a6c3fa1cc76fee34ab1
MD5 3f477d6da18aed1f591567773587203e
BLAKE2b-256 1c517445eff86e983f6bb118386ea64e8e783e0b849d9cf266553b8f9413011b

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f726237d5059c7418b2cd0460c22330ce78f98b11c1ec70881c44fb4aae1cf85
MD5 d27535dc4a6220af2ef9bcefd7b9833d
BLAKE2b-256 9268e05969e8551330b27d439703de0ea8d8ac2d9ce35e2d0fcd5d487658a28d

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 654303fd57a393721471a6b5ab37fe1a99e667a8eadf29e4e363e7e253db0ffd
MD5 225f6d89854f55e469467f19303911da
BLAKE2b-256 41dbccedb6cd80cb6d5a4de3012eb91f83e6d4ba040b3fadb271d72cf5e39caa

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c2c3fc56c17697aa86b99e4385fb0629fb92ce9c7c9ab8422940b4cc782531d9
MD5 df2fb65a30a4d054e99870523b2c88b8
BLAKE2b-256 89045f40c30a6416bcec27bf8ffadc42c265414f2abbdfa8fefd5fe67e8e2164

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 45b30a8640cddfd33c898567d233a25d2123f9f16a4b169a4186ead1a68a8512
MD5 6212097ebf97c1d1b05def1190c895e8
BLAKE2b-256 02e1150b5558318e8ed6bf4ebcab3e06d541d4c1d33ba541effccc3c45f7a78e

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 578f2bec0075f50a37990c2e29d5709e98087439dec8b8276e5e9023c0651c3a
MD5 cec80c3a682cc1a8c3e1f7cc96ee7922
BLAKE2b-256 bf9fb102fa74ee8112180469a290a789afa31da6722aa2ba52ccb490e352b986

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8a2ee5c68a742a43aaae280c7918b1fd45a2c53e5defdc56bea44b20e2f3fccd
MD5 1fcccbbaadd93e425d7982317d248505
BLAKE2b-256 52773c2ff83b622c82123302e92696fa5cbbf8221a0f1171d20fd4171af2749f

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cd106af4d83c9faeb32d828e805f50f7352a8fba22d049c5120ca9135e1fdf44
MD5 90173a1e484f04aa962d036cf1fb6b3b
BLAKE2b-256 f8414b948b43c08cd48406b3fd7da36fc07dd1b96b4361e3ccef326f0f854fb5

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fba36422bf2343bbbaf228e6da1edb22d5cbb703a0f61c6d769d31cba4eac422
MD5 11a74c4d1ee6b6b7ee171116d3cf73b3
BLAKE2b-256 729d2efa66675cb01e3ae5a7961dd0a9186b16d77d97bd44cd13c7cd6c79984c

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4e1ac1fc383060c082f7c78437d80bfcb9b1dbf24bdc6f209d39710c5d3d781e
MD5 3dea278384023411badc3a3f19ffade4
BLAKE2b-256 730f839142974d079933edc8bcae52224a0ace94ee20e8a6687415f96980975c

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e0ed2a9fa9ce257d83e33675ed4147958a22d5d79a67f90a1ec067d63e8a3bf
MD5 590f103e9470bccd25cfcb21fda15264
BLAKE2b-256 34242bd65ff54d957e0dd36853e7c708c1bd4f71c13ad532a1899533f86b1296

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7fa28b660cf9ea5fa7b334e8b6853a788943d427979324b71170a0bfe6e895b7
MD5 e605a472a0c1ae030db35635a8f9d379
BLAKE2b-256 5e353c8645dd70ff7038aebe6e729c7c98b49dedd2f9f90fa4f489484b437b55

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 cb946c58cb717feb53a6d08f2328761e0376d9d4cda65912558addc10452e6b5
MD5 afb5bedfd98ce40ec067859e5153e5f9
BLAKE2b-256 8ba9c12f71cff7eb0f275d70f20e4852311ecb477f57426bd9f6e39bec42ca77

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b9c1b4bd160f28318200bb7313d04bfb72ac6065b8bd9bf27e26aaa2f7e27e8d
MD5 420f99777c43f2f1ffd93c8134ecad52
BLAKE2b-256 388d4190daaf47b8162e79828dec17f870c0b348683c13685c261af04ff253f4

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3c9e367a9c52d5245b5a27f78dc69a7e9ffb9a060b53a167038f235d5aba30cd
MD5 6070ebd1ba87f87afb43d314d5c9ed0e
BLAKE2b-256 5a4a9a41500b4d3be9c37dd71ddae56a7ca16893fdde7a11872a7cac608093f0

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b6ee95afb5d35891749e78ff02a38079161489454c52ccd225ca594aab01e5f1
MD5 fec616688fa9bcd973d57e32aa1e2643
BLAKE2b-256 51744a248f6e66e3659966e2d3a2090090fbbb6b99b473caf7dc7d62b6a49d47

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: perfmetrics-4.1.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 170.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for perfmetrics-4.1.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 3fadfa77e4e0fa8e1aba4c47225869213c62ef0cc187e117192f916b0b4c44c6
MD5 c1e7e5379d815019ad300980dd9384a0
BLAKE2b-256 590d518c7dd2dff18e259fee3b4f6fc7f902ac1a9387bbcb1ea65a1695a7a129

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 12d41279bc3c0fe31d2c1468a9b2d1ddf0a69b5e5bc7fd751bed72d8f76b9d24
MD5 8a431f1e7c0a4b775f4ded10a1faf35c
BLAKE2b-256 81359617020e2b6a9da80241c475a2da1d2024af08bd8ac74d956e78a07cda02

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2cc76c45f400d41659bc7173162f80a5c59dbe7ad1ea9de219812abd47173e02
MD5 bfbd3a6691c4513e01579b18caab88e7
BLAKE2b-256 0aa62ff7b63f213fa4e670d6b55ffcea3d0e08bb23bcce45eed9fe265fb221d1

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d917664c432f24441ae5985702d0b0db184eb56ea20fe5467b913117a15031d5
MD5 1a0fcda38ce055b6bcf7dff30dce8ad2
BLAKE2b-256 8d123b4c192330b88ad6227ea0cbcfe23f71e56de1356d6dda777d77d74190fb

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 05a9c0d02d3791bee6b0637799ff0bf9c7c45a8352c559fbd180bf60c3ef9d83
MD5 463a86834eceb4d76897fda4622eaf42
BLAKE2b-256 5560ebaf8816101d54f825a5a698790a5c9dd25c9fe7fab4992e6187b46c07c6

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3cde6a12a4e6a56b1d2d642e8f53159423609ff644667331257d44c0f05ea39c
MD5 f528926655e9b217902cd8b462744cc8
BLAKE2b-256 2c21fe2d79ef7686ddf5a9f932b337b412cc798453f5d28cba642de913e400e0

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 045674ce2f99e9aaf204f501656a2e99363f5104070365536076a4dcb6c81b02
MD5 1853b8a8820849da47c250390129809d
BLAKE2b-256 6bd8d3f3ea8335ab46db140abee6fbd37e8fdbd8196858b729d09999b2949387

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1a8d95781c32c92674173c540c3bbe64768f46fa5020d90f7f0e35142d71d0f0
MD5 005991a7ed793e6aa667510a4d6462a2
BLAKE2b-256 4891d39ebbc40ed3759e60217c43ce3b6d9927a7a3d9cfdaed199c533523b8c3

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: perfmetrics-4.1.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 170.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.8.10

File hashes

Hashes for perfmetrics-4.1.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d910b8a0fc9c2f933c30af0c367df02fee5e400665900a03f7aa5713cd4db6fc
MD5 57d4218b1a1ebc491e94cbc4d825426d
BLAKE2b-256 bd98e33625941a1af0e1728e6a0b3745cc009e39fc5c326193749fe3eb66a817

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4a143bf1329a0fda257ec3be1bbf82b02999cea4aee2afeae75a3b93e6675c60
MD5 5a08f92465b8efa38d3d66e2b81dad57
BLAKE2b-256 249b0948531a33f10926cac4b775cc34ed61c74020dd452b22f118ae6cb5e1ca

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1f3a8cc4f17759afbdb9fa5fe38bc530ee48b718a03ffc96cfaae0400d719128
MD5 3a71de38d89ecaf7a7e82e9764efc59b
BLAKE2b-256 ecd07ad80d2f1f96f94057b58ae7e6c91bb8e497e88dd98c7a2633bd3475d02c

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de47d8033f477f1c16a995fb540a74b17335d1b3987641cbd1d9549b42d332c2
MD5 68a4f8c4f021a2598f0a03ddcd687e95
BLAKE2b-256 beb60392d76f41e9ff34acb4e2baf7be0a6074fa2fc29a502ae3258b9f4bf772

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 aa73108d66d9bad3a386c119e7d716105e40a30c37624ae9606fceb3425738dc
MD5 611b3eda3d55515097f7cf61a9ff2ce4
BLAKE2b-256 1c0a9a286eba12bb193332ee93ca7d0a06464badd12a77c5c105d2b3ea9272f9

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ac0226dfb851d5c27904eeca95d3a64c877d6f9591d57b59bedd59f1455e3930
MD5 b14cb949f1eba17553cf9a7e1823b969
BLAKE2b-256 13ee44e0d319721b7593bd27bdac3b7f6257d85ae571e9b7d90d4e926f19a588

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ae4d0378f50239e093df2d4d08f88476c584330b72f00325dd848b812e74e4af
MD5 2a8963e0abc15ebe8054324865201ce7
BLAKE2b-256 ff8384f464505ae05bf186dbd202b98737d7bbf97528986de64f30515a1e2643

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for perfmetrics-4.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ff6b8b8d9adc8592f2d0710e249ac174000e8cc060987e3dac76be721b0ae1ec
MD5 39bc269c1a6285bc4ce3573cd3962961
BLAKE2b-256 5367c6e2cefe9d282888b350274aed7823c3a8be76a803641a880a5a33e02c4e

See more details on using hashes here.

File details

Details for the file perfmetrics-4.1.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: perfmetrics-4.1.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 170.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for perfmetrics-4.1.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 e2ec1ba5649c901d1a703b0a03de86ff7fc76c0f8e9ab756c25a992573a1068f
MD5 10d8e804357edffbed346decaf4807c7
BLAKE2b-256 5ed648602eaa544a2195184ce377094c14e7c1f2982135dbdd8de9ed4b0afdc2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page