Skip to main content

Lightweight GUI for sorting, classifying, and matching MELODIC ICA components.

Project description

PICAchooser (the package)

Logo

A set of simple gui tools for scanning through MELODIC probabalistic ICA runs and quickly making decisions about which components to retain, and what relates to what. These tools each only do one thing, but they do them quickly and easily using only keyboard input. Current programs are PICAchooser, melodicomp, and grader.

Full documentation is here: https://picachooser.readthedocs.io/en/latest/introduction.html

What’s in here?

PICAchooser

Lets you step through the components in an ICA analysis (from many sources), and select which components you want to retain. In addition to showing the spatial ICs, it also displays the componnent timecourses, motion traces, and the correlation between them, to help with your decision making.

Once you launch, you do everything with keyboard commands, and it’s been optimized to go as fast as possible, so you aren’t waiting around for things.

PICAchooser screenshot

PICAchooser screenshot

melodicomp

Puts up two melodic IC files side by side. In order to make the comparison meaningful, it first calculates the spatial crosscorrelation between each IC in the first file and each IC in the second. As you step through components in the first file, on the right you see the component with the highest crosscorrelation in the second file. You can sort either by IC order in the first file (i.e. in order of descending variance explained), or in descending correlation coefficient (i.e. best matched components first). When you quit (or hit the escape key), it writes out a file listing the best matched ICs along with their correlation coefficients.

I’m especially proud of the “blink” feature. When you hit the “b” key, the right and left window swap, instantaneously. This lets you see what changes between the two sets of networks in a very natural way. This is inspired by blink comparators, a cool old piece of tech probably long forgotten by most.

Again, once you launch, you do everything with keyboard commands, and it’s been optimized to go as fast as possible, so you aren’t waiting around for things.

PICAchooser screenshot

melodicomp screenshot

A note on component numbering

Astute users will notice that components are numbered differently in different contexts. This is actually intentional. In the GUI, and in any files that work directly with FSL tools, I use whatever convention FSL uses. So for displayed components, the first component is IC1. Output files that will be used by fsl_regfilt also use this convention. However, for any informational output on the terminal that you might use when looking at components in FSLeyes directly, or operating on them with fslmaths or your own python code, the component numbering starts at 0. As the universe intended. If you use matlab, add 1 in your head.

Support

This code base is being developed and supported by a grant from the US NIH 1R01 NS097512.

Additional packages used

PICAchooser would not be possible without many additional open source packages. These include:

pyqtgraph:

  1. Luke Campagnola. PyQtGraph: Scientific Graphics and GUI Library for Python

nibabel:

  1. Nibabel: Python package to access a cacophony of neuro-imaging file formats | https://10.5281/zenodo.591597

numpy:

  1. Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. The NumPy Array: A Structure for Efficient Numerical Computation, Computing in Science & Engineering, 13, 22-30 (2011) | https:10.1109/MCSE.2011.37

scipy:

  1. Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272 (2020) | https://doi.org/10.1038/s41592-019-0686-2

pandas:

  1. McKinney, W., pandas: a foundational Python library for data analysis and statistics. Python for High Performance and Scientific Computing, 2011. 14.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

picachooser-1.4.0.tar.gz (81.9 kB view details)

Uploaded Source

Built Distribution

picachooser-1.4.0-py2.py3-none-any.whl (94.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file picachooser-1.4.0.tar.gz.

File metadata

  • Download URL: picachooser-1.4.0.tar.gz
  • Upload date:
  • Size: 81.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.15

File hashes

Hashes for picachooser-1.4.0.tar.gz
Algorithm Hash digest
SHA256 ff55d2ebd0a5fd495ec39c12a76feaad7d641fc01109575d3e1c7e7acc55b3c3
MD5 2762fbb72b2e55c13eed2cbd599c1588
BLAKE2b-256 2e06adf29d6a580e49af650999de7ffe583b267680b927e68c83a19abd874187

See more details on using hashes here.

File details

Details for the file picachooser-1.4.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for picachooser-1.4.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d433bb0292267b1d975bb9516c528e27d77af9fed1bc262943d88873ba767f8d
MD5 02c4667753c97a27c00d37f8662b276c
BLAKE2b-256 13f29f26fec74e5eebe40fa49aedc457d70ab77912ca10fbe9e33d2995acc746

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page