Skip to main content

The next generation MusicBrainz tagger

Project description

MusicBrainz Picard

Github Actions Status Codacy Grade

MusicBrainz Picard is a cross-platform (Linux, macOS, Windows) audio tagging application. It is the official MusicBrainz tagger.

Picard supports the majority of audio file formats, is capable of using audio fingerprints (AcoustIDs), performing CD lookups and disc ID submissions, and it has excellent Unicode support. Additionally, there are several plugins available that extend Picard's features.

When tagging files, Picard uses an album-oriented approach. This approach allows it to utilize the MusicBrainz data as effectively as possible and correctly tag your music. For more information, see the illustrated quick start guide to tagging and the documentation.

Features

  • Multiple formats: Picard supports all popular music formats, including MP3, FLAC, OGG, M4A, WMA, WAV, and more.
  • AcoustID: Picard uses AcoustID audio fingerprints, allowing files to be identified by the actual music, even if they have no metadata.
  • Comprehensive database: Picard uses the open and community-maintained MusicBrainz database to provide accurate information about millions of music releases.
  • CD lookups: Picard can lookup entire music CDs with a click.
  • Plugin support: If you need a particular feature, you can choose from a selection of available plugins or write your own.
  • Scripting: A flexible and powerful, yet easy to learn, scripting language allows you to exactly specify how your music files will be named and how the tags will look like.
  • Cover Art: Picard can find and download the correct cover art for your albums.
  • Open Source: Picard is licensed under the GNU General Public License 2.0 or later, and is hosted on GitHub where it is actively developed.

Installation

Binary downloads are available on the Picard download page.

INSTALL.md has instructions on building this codebase.

Support and issue reporting

Please report all bugs and feature requests in the MusicBrainz issue tracker. If you need support in using Picard please read the documentation first and have a look at the MusicBrainz community forums.

Trivia

Picard is named after Captain Jean-Luc Picard from the TV series Star Trek: The Next Generation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

picard-2.8.0rc2.tar.gz (4.5 MB view details)

Uploaded Source

Built Distributions

picard-2.8.0rc2-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

picard-2.8.0rc2-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

picard-2.8.0rc2-cp39-cp39-macosx_10_15_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

picard-2.8.0rc2-cp38-cp38-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

picard-2.8.0rc2-cp38-cp38-macosx_10_15_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

picard-2.8.0rc2-cp38-cp38-macosx_10_14_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

picard-2.8.0rc2-cp37-cp37m-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

picard-2.8.0rc2-cp37-cp37m-macosx_10_15_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

picard-2.8.0rc2-cp36-cp36m-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

picard-2.8.0rc2-cp36-cp36m-macosx_10_14_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file picard-2.8.0rc2.tar.gz.

File metadata

  • Download URL: picard-2.8.0rc2.tar.gz
  • Upload date:
  • Size: 4.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.12

File hashes

Hashes for picard-2.8.0rc2.tar.gz
Algorithm Hash digest
SHA256 e5fe0e422f1c80a1175c784d3084b2441658010af2f38b8e0ba4a195a8cf5d43
MD5 7f927912c9ebe80469400cb1b607fb2e
BLAKE2b-256 37f373bed5b803124bc48827af3b6a172c60a4604c614a27b7ceebc8d556e9fe

See more details on using hashes here.

File details

Details for the file picard-2.8.0rc2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for picard-2.8.0rc2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 02d9d71d9cbd3432567243b20d1a3d6cff1d021db09cc2a3dc79665b6917c4db
MD5 f72eac84ee0c474009dcc7854fcf0d30
BLAKE2b-256 20ec959fa8068beda684eddf57c497f10fdd8c2b6c4647ad7942bee2e8791ebe

See more details on using hashes here.

File details

Details for the file picard-2.8.0rc2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: picard-2.8.0rc2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for picard-2.8.0rc2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 70f83fb8e27c57969488e9e81e4e226b7e3f228d6ce2c6a5746adc1f8ee6f4ee
MD5 4ccbfd7ea4d2c73851cb2da790897db9
BLAKE2b-256 9041342f48f15634a836ff2f61beca20bb8b3049d6492c46e10075d0bb616ea0

See more details on using hashes here.

File details

Details for the file picard-2.8.0rc2-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for picard-2.8.0rc2-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b9f61d85f90ae6f29d6eb27fb57985b1c283637346574d72365474943bc2f5bb
MD5 58642e16955fd0097354eb3497512148
BLAKE2b-256 cd9462229802c64e9c17f15ef081875cfe57643fbc69120f948e092aac238c46

See more details on using hashes here.

File details

Details for the file picard-2.8.0rc2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: picard-2.8.0rc2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for picard-2.8.0rc2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2203eae2ef6edbd1e5b0a3514c8873bd265def891a7cff8018ad5a1666874a53
MD5 898fedd5aff2423498fafd46be6dc186
BLAKE2b-256 f5dbfa2dc479bb8eb66360baf9787357e1b29898395cd68e8f47e4347b0e9bc6

See more details on using hashes here.

File details

Details for the file picard-2.8.0rc2-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for picard-2.8.0rc2-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 43761f9429533b9ae789ab5e9faabf32d379a20f9eadfa557cc2b04cc2d4fc98
MD5 25ea2479d615e5d8691fb8a8835907c7
BLAKE2b-256 a133de82d04ef3a9b63a8f26d7b6147570e39fdb91d024eabc72bf7d62f5c8c5

See more details on using hashes here.

File details

Details for the file picard-2.8.0rc2-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for picard-2.8.0rc2-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 62827751f59d1cd9d980eeea02a54e516b08fea1276260b064d95385d19f9f55
MD5 980444b611da58118eba9c0feed1a266
BLAKE2b-256 1a15c330b3852ddd3706e49370cea97f3346f5205143dc2ec8e0cb793ceaabe9

See more details on using hashes here.

File details

Details for the file picard-2.8.0rc2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for picard-2.8.0rc2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a28a1722a98bf4c27bb96409b72e7059170d994cf6eb0684b1e6057f5ed78c51
MD5 010da5e182ebe70fffe478dd3224221c
BLAKE2b-256 00c834baa01de511f98c167f29385b933f1aa719aef0f976bc321ac375b75ceb

See more details on using hashes here.

File details

Details for the file picard-2.8.0rc2-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for picard-2.8.0rc2-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 028edc78bc00e7a6a94ce00268cc771cf8aa4a3eeac417e2c3fbb2b12a1d27e1
MD5 4f79290597703e2d9152fb2cba8909d6
BLAKE2b-256 411f5531879bfb8157b663c8fb527436d077fed30016c9371560a68ce8b9b9bb

See more details on using hashes here.

File details

Details for the file picard-2.8.0rc2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: picard-2.8.0rc2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.8

File hashes

Hashes for picard-2.8.0rc2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 bfad6bbbc8eb0be1f080e76598f882d8d0ebfdbd6a65856839506969266f8d56
MD5 0614d05bc8f561c415424e813d019072
BLAKE2b-256 cbbc5408e7ce9fbb4dfffbdcdbced81c116a0aa544432b74ce26e62528c6db9a

See more details on using hashes here.

File details

Details for the file picard-2.8.0rc2-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: picard-2.8.0rc2-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.15

File hashes

Hashes for picard-2.8.0rc2-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4be6eb31a401cf1f5a016b843a93327bc38d6f90bf858a13871673044420802c
MD5 f9af1421160e57cc0ab35087c01f1b32
BLAKE2b-256 5e9bd9cb241a4592234ea257cfba97f3b3dc8455a7d0312f014c7582e5f35120

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page