Simple data transformation pipeline.
Project description
A simple data transformation pipeline based on python’s iteration protocol that runs on python versions 2.7, 3.3 and 3.4.
+----------+ +-------------+ +-------------+ +--------+ +----------+
| Producer | ---> | Transformer | ---> | Transformer | ---> | Tester | ---> | Consumer |
+----------+ +-------------+ +-------------+ +--------+ +----------+
A pipeline model expects 4 types of filters:
Producer: starting point, outbound only;
Transformer: input, processing, output;
Tester: input, discard or pass-thru;
Consumer: ending point, inbound only.
import plumber
@plumber.filter
def upper(data):
return data.upper()
ppl = plumber.Pipeline(upper)
output = ppl.run("Hey Jude, don't make it bad")
print(''.join(output))
"HEY JUDE, DON'T MAKE IT BAD"
Since the design is based on python’s iteration protocol, both producers and consumers are ordinary iterable objects. Transformers are implemented as callables that accept a single argument, perform the processing and return the result.
Input data may also be checked against some preconditions in order to decide if the transformation should happen or be by-passed. For example:
import plumber
def is_vowel(data):
if data not in 'aeiou':
raise plumber.UnmetPrecondition()
@plumber.filter
@plumber.precondition(is_vowel)
def upper(data):
return data.upper()
ppl = plumber.Pipeline(upper)
output = ppl.run("Hey Jude, don't make it bad")
print(''.join(output))
"hEy jUdE, dOn't mAkE It bAd"
Prefetching
If you think the pipes are taking too long to move data forward, you can use a prefetching feature. To use it, just define the upper limit of items to be pre fetched.
Using the same example as above:
ppl = plumber.Pipeline(stripper, upper)
transformed_data = ppl.run([" I am the Great Cornholio!", "Hey Jude, don't make it bad "],
prefetch=2)
for td in transformed_data:
print(td)
I AM THE GREAT CORNHOLIO!
"HEY JUDE, DON'T MAKE IT BAD"
By default the prefetching mechanism is thread-based, so be careful with cpu-bound pipelines.
Installation
Pypi (recommended):
$ pip install picles.plumber
Source code (development version):
$ git clone https://github.com/picleslivre/plumber.git && cd plumber && python setup.py install
Use license
This project is licensed under FreeBSD 2-clause. See LICENSE for more details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file picles.plumber-0.11.tar.gz
.
File metadata
- Download URL: picles.plumber-0.11.tar.gz
- Upload date:
- Size: 4.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dfeebfc1b37fb384846a3c2650814aed0803ad4a360a8e7195f0fc9e0c5b9a89 |
|
MD5 | 98a736be643f1a21d63895255e9fb3db |
|
BLAKE2b-256 | 0d3c932f2464d9ae4664c73f20791412a2a88d55d0f4524ce818d8635f60ef0d |
Provenance
File details
Details for the file picles.plumber-0.11-py2.py3-none-any.whl
.
File metadata
- Download URL: picles.plumber-0.11-py2.py3-none-any.whl
- Upload date:
- Size: 6.9 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cebb5ed132f43b33be0fa14bf2ffadb2aaf14b9f26af90441840e576ba6e0ffe |
|
MD5 | 90f0ba9be68f0a5a9c7be419dd466dc7 |
|
BLAKE2b-256 | 19cd7445ba7b97c8ac6fd934f7cda7ca5d0ad905ab4925d06629bd5f1211c0dd |