Python IMage MIning
Project description
PIMMI : Python IMage MIning
Library allowing visual search in a corpus of images, from Twitter... or elsewhere.
SIFT interest points, clustering, based on OpenCV and Faiss, multithreaded.
Very preliminary stuff for now.
Demo
# Install dependencies
pip install -r requirements.txt
# --- Play with a very small dataset
# Create a default index structure and fill it with the demo dataset
python3 pimmi/index_dataset.py --action fill --thread 16 --index "IVF1024,Flat" --save_faiss index/small_dataset.ivf1024 --images_dir demo_dataset/small_dataset
# Query the same dataset on this index
python3 pimmi/query_dataset.py --simple --thread 16 --load_faiss index/small_dataset.ivf1024 --save_mining index/small_dataset.ivf1024.mining --images_mining --images_root demo_dataset/dataset1
# --- Play with the demo dataset 1
python3 pimmi/index_dataset.py --action fill --thread 16 --index "IVF1024,Flat" --save_faiss index/dataset1.ivf1024 --images_dir demo_dataset/dataset1
python3 pimmi/query_dataset.py --thread 16 --load_faiss index/dataset1.ivf1024 --save_mining index/dataset1.ivf1024.mining --images_mining --images_root demo_dataset/dataset1
# Post process the mining results in order to visualize them
python3 pimmi/fuse_query_results.py
python3 pimmi/generate_cluster_viz.py
Happy hacking !
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
pimmi-0.0.1-py3-none-any.whl
(29.8 kB
view details)
File details
Details for the file pimmi-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: pimmi-0.0.1-py3-none-any.whl
- Upload date:
- Size: 29.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.7.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4f745a88b7604f64b8cfe00afcd39ea1e8e3edbf64516dea0c12c7d1213b691f |
|
MD5 | c6ad14ddb1958238f1d036dbce01edcf |
|
BLAKE2b-256 | 33e623d2ed239f34dbd231b12e5569917e303a3abb0c53f86b43ba3696a543ca |