Python DB-API and SQLAlchemy dialect for Pinot.
Project description
Python DB-API and SQLAlchemy dialect for Pinot
This module allows accessing Pinot via its SQL API.
Usage
Using the DB API:
from pinotdb import connect
conn = connect(host='localhost', port=8099, path='/query/sql', scheme='http')
curs = conn.cursor()
curs.execute("""
SELECT place,
CAST(REGEXP_EXTRACT(place, '(.*),', 1) AS FLOAT) AS lat,
CAST(REGEXP_EXTRACT(place, ',(.*)', 1) AS FLOAT) AS lon
FROM places
LIMIT 10
""")
for row in curs:
print(row)
Using SQLAlchemy:
from sqlalchemy import *
from sqlalchemy.engine import create_engine
from sqlalchemy.schema import *
engine = create_engine('pinot://localhost:8099/query/sql?server=http://localhost:9000/') # uses HTTP by default :(
# engine = create_engine('pinot+http://localhost:8099/query/sql?server=http://localhost:9000/')
# engine = create_engine('pinot+https://localhost:8099/query/sql?server=http://localhost:9000/')
places = Table('places', MetaData(bind=engine), autoload=True)
print(select([func.count('*')], from_obj=places).scalar())
Examples with Pinot Quickstart
Start Pinot Batch Quickstart
docker run --name pinot-quickstart -p 2123:2123 -p 9000:9000 -p 8000:8000 -d apachepinot/pinot:latest QuickStart -type batch
Once pinot batch quickstart is up, you can run below sample code snippet to query Pinot:
python3 examples/pinot-quickstart-batch.py
Sample Output:
Sending SQL to Pinot: SELECT * FROM baseballStats LIMIT 5
[0, 11, 0, 0, 0, 0, 0, 0, 0, 0, '"NL"', 11, 11, '"aardsda01"', '"David Allan"', 1, 0, 0, 0, 0, 0, 0, '"SFN"', 0, 2004]
[2, 45, 0, 0, 0, 0, 0, 0, 0, 0, '"NL"', 45, 43, '"aardsda01"', '"David Allan"', 1, 0, 0, 0, 1, 0, 0, '"CHN"', 0, 2006]
[0, 2, 0, 0, 0, 0, 0, 0, 0, 0, '"AL"', 25, 2, '"aardsda01"', '"David Allan"', 1, 0, 0, 0, 0, 0, 0, '"CHA"', 0, 2007]
[1, 5, 0, 0, 0, 0, 0, 0, 0, 0, '"AL"', 47, 5, '"aardsda01"', '"David Allan"', 1, 0, 0, 0, 0, 0, 1, '"BOS"', 0, 2008]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, '"AL"', 73, 3, '"aardsda01"', '"David Allan"', 1, 0, 0, 0, 0, 0, 0, '"SEA"', 0, 2009]
Sending SQL to Pinot: SELECT playerName, sum(runs) FROM baseballStats WHERE yearID>=2000 GROUP BY playerName LIMIT 5
['"Scott Michael"', 26.0]
['"Justin Morgan"', 0.0]
['"Jason Andre"', 0.0]
['"Jeffrey Ellis"', 0.0]
['"Maximiliano R."', 16.0]
Sending SQL to Pinot: SELECT playerName,sum(runs) AS sum_runs FROM baseballStats WHERE yearID>=2000 GROUP BY playerName ORDER BY sum_runs DESC LIMIT 5
['"Adrian"', 1820.0]
['"Jose Antonio"', 1692.0]
['"Rafael"', 1565.0]
['"Brian Michael"', 1500.0]
['"Alexander Emmanuel"', 1426.0]
Start Pinot Hybrid Quickstart
docker run --name pinot-quickstart -p 2123:2123 -p 9000:9000 -p 8000:8000 -d apachepinot/pinot:latest QuickStart -type hybrid
Below is an example against Pinot Quickstart Hybrid:
python3 examples/pinot-quickstart-hybrid.py
Sending SQL to Pinot: SELECT * FROM airlineStats LIMIT 5
[-2147483648, -2147483648, 19805, -2147483648, -2147483648, -2147483648, 2112, '1700-1759', -2147483648, 1700, 1445, 135, 'null', 0, 'AA', -2147483648, 3, 1, 16102, 0, -2, 0, 1443, '1400-1459', -1, 'MKE', 13342, 1334205, 33342, 'Milwaukee, WI', 'WI', 55, 'Wisconsin', 45, 853, 4, 389, '[13930]', 1, '[1393003]', '["ORD"]', 252, 0, '[27]', 1, '["N583AA"]', '[44]', '[2047]', '[1715]', 1, -2147483648, '2014-01-01', 214, 1, -2147483648, -2147483648, 1, -2147483648, 'DFW', 11298, 1129803, 30194, 'Dallas/Fort Worth, TX', 'TX', 48, 'Texas', 74, 1, '["SEA", "PSC", "PHX", "MSY", "ATL", "TYS", "DEN", "CHS", "PDX", "LAX", "EWR", "SFO", "PIT", "RDU", "RAP", "LSE", "SAN"]', -2147483648, 'N583AA', 6, 9, -2147483648, 'AA', -2147483648, 1452, 2106, 2014]
[186, 165, 19805, 0, -13, 0, 1327, '1300-1359', -1, 1340, 1125, 195, 'null', 0, 'AA', -2147483648, 3, 1, 16102, 0, -4, 0, 1121, '1100-1159', -1, 'DFW', 11298, 1129803, 30194, 'Dallas/Fort Worth, TX', 'TX', 48, 'Texas', 74, 1121, 5, -2147483648, '[-2147483648]', 0, '[-2147483648]', '["null"]', -2147483648, -2147483648, '[-2147483648]', -2147483648, '["null"]', '[-2147483648]', '[-2147483648]', '[-2147483648]', 0, -2147483648, '2014-01-01', 969, 1, -2147483648, -2147483648, 1, -2147483648, 'MIA', 13303, 1330303, 32467, 'Miami, FL', 'FL', 12, 'Florida', 33, 1, '["null"]', -2147483648, 'N3JPAA', 6, 15, -2147483648, 'AA', -2147483648, 1136, 1321, 2014]
[142, 126, 19805, 1, 41, 41, 2221, '2100-2159', 2, 2140, 1705, 155, 'null', 0, 'AA', 0, 3, 1, 16102, 1, 54, 54, 1759, '1700-1759', 3, 'DFW', 11298, 1129803, 30194, 'Dallas/Fort Worth, TX', 'TX', 48, 'Texas', 74, 1055, 5, -2147483648, '[-2147483648]', 0, '[-2147483648]', '["null"]', -2147483648, -2147483648, '[-2147483648]', -2147483648, '["null"]', '[-2147483648]', '[-2147483648]', '[-2147483648]', 0, -2147483648, '2014-01-01', 1482, 1, 41, -2147483648, 1, 0, 'LAS', 12889, 1288903, 32211, 'Las Vegas, NV', 'NV', 32, 'Nevada', 85, 1, '["null"]', 0, 'N466AA', 5, 11, -2147483648, 'AA', 0, 1810, 2216, 2014]
[94, 56, 19805, 0, 5, 5, 1615, '1600-1659', 0, 1610, 1445, 85, 'null', 0, 'AA', -2147483648, 3, 1, 16102, 0, -4, 0, 1441, '1400-1459', -1, 'LAX', 12892, 1289203, 32575, 'Los Angeles, CA', 'CA', 6, 'California', 91, 337, 2, -2147483648, '[-2147483648]', 0, '[-2147483648]', '["null"]', -2147483648, -2147483648, '[-2147483648]', -2147483648, '["null"]', '[-2147483648]', '[-2147483648]', '[-2147483648]', 0, -2147483648, '2014-01-01', 2456, 1, -2147483648, -2147483648, 1, -2147483648, 'SFO', 14771, 1477101, 32457, 'San Francisco, CA', 'CA', 6, 'California', 91, 1, '["SEA", "PSC", "PHX", "MSY", "ATL", "TYS", "DEN", "CHS", "PDX", "LAX", "EWR", "SFO", "PIT", "RDU", "RAP", "LSE", "SAN", "SBN", "IAH", "OAK", "BRO", "JFK", "SAT", "ORD", "ACY", "DFW", "BWI", "TPA", "BFL", "BOS", "SNA", "ISN", "RIC", "HLN", "FAR", "GRB", "FLL", "LAS", "LGA", "BNA", "SJC", "OGG", "BUR", "EUG", "MRY", "JAX", "CLT", "SDF", "IAD", "MCI", "HOU", "ABI", "SJU", "MSN", "PHL", "DAY", "MIA", "HSV"]', -2147483648, 'N3FLAA', 14, 24, -2147483648, 'AA', -2147483648, 1505, 1601, 2014]
[95, 61, 20409, 1, 25, 25, 1040, '1000-1059', 1, 1015, 859, 76, 'null', 0, 'B6', 6, 3, 1, 16102, 0, 6, 6, 905, '0800-0859', 0, 'LGB', 12954, 1295402, 32575, 'Long Beach, CA', 'CA', 6, 'California', 91, 353, 2, -2147483648, '[-2147483648]', 0, '[-2147483648]', '["null"]', -2147483648, -2147483648, '[-2147483648]', -2147483648, '["null"]', '[-2147483648]', '[-2147483648]', '[-2147483648]', 0, -2147483648, '2014-01-01', 147, 1, 0, -2147483648, 1, 19, 'OAK', 13796, 1379602, 32457, 'Oakland, CA', 'CA', 6, 'California', 91, 1, '["SEA", "PSC", "PHX", "MSY", "ATL", "TYS", "DEN", "CHS", "PDX", "LAX", "EWR", "SFO", "PIT", "RDU", "RAP", "LSE", "SAN", "SBN", "IAH", "OAK", "BRO", "JFK", "SAT", "ORD", "ACY", "DFW", "BWI", "TPA", "BFL"]', 0, 'N534JB', 9, 25, -2147483648, 'B6', 0, 930, 1031, 2014]
Sending SQL to Pinot: SELECT count(*) FROM airlineStats LIMIT 5
[10577]
Sending SQL to Pinot: SELECT AirlineID, sum(Cancelled) FROM airlineStats WHERE Year > 2010 GROUP BY AirlineID LIMIT 5
[20437, 0.0]
[20409, 14.0]
[19805, 33.0]
[19790, 66.0]
[20366, 18.0]
Sending SQL to Pinot: select OriginCityName, max(Flights) from airlineStats group by OriginCityName ORDER BY max(Flights) DESC LIMIT 5
['Casper, WY', 1.0]
['Austin, TX', 1.0]
['Deadhorse, AK', 1.0]
['Chicago, IL', 1.0]
['Monterey, CA', 1.0]
Sending SQL to Pinot: SELECT OriginCityName, sum(Cancelled) AS sum_cancelled FROM airlineStats WHERE Year>2010 GROUP BY OriginCityName ORDER BY sum_cancelled DESC LIMIT 5
['Chicago, IL', 112.0]
['Atlanta, GA', 65.0]
['New York, NY', 40.0]
['Houston, TX', 35.0]
['Denver, CO', 28.0]
Sending Count(*) SQL to Pinot
10578
Sending SQL: "SELECT OriginCityName, sum(Cancelled) AS sum_cancelled FROM "airlineStats" WHERE Year>2010 GROUP BY OriginCityName ORDER BY sum_cancelled DESC LIMIT 5" to Pinot
[('Chicago, IL', 112.0), ('Atlanta, GA', 65.0), ('New York, NY', 40.0), ('Houston, TX', 35.0), ('Denver, CO', 28.0)]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pinotdb-0.3.1.tar.gz
(14.4 kB
view details)
Built Distribution
File details
Details for the file pinotdb-0.3.1.tar.gz
.
File metadata
- Download URL: pinotdb-0.3.1.tar.gz
- Upload date:
- Size: 14.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e6a5ca92474b8e3cbb2d4560d784568bf329f33656539313c09592f84d9e36a4 |
|
MD5 | ce84b724608fbe3a8fd3aef202152d3f |
|
BLAKE2b-256 | 26942b7d82ad3fc144e660ee84eef1ce4cca0c08857db58e82e73426d7eb918c |
Provenance
File details
Details for the file pinotdb-0.3.1-py2.py3-none-any.whl
.
File metadata
- Download URL: pinotdb-0.3.1-py2.py3-none-any.whl
- Upload date:
- Size: 11.9 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5925c85ffee9512c11d71f74b62c7393b7597bd60b864ddea5a7cc2ef95c846d |
|
MD5 | adede027e153a7e169e30d80ad3ab9be |
|
BLAKE2b-256 | 2f6bc06770f6f3f1db0ed4b0e477d1f24aaea94113178443398cd67079748bb6 |