Skip to main content

Pipeline Profiler tool. Enables the exploration of D3M pipelines in Jupyter Notebooks

Project description

PipelineProfiler

AutoML Pipeline exploration tool compatible with Jupyter Notebooks.

System screen

Paper: https://arxiv.org/abs/2005.00160

Demo

To use PipelineProfiler, first install the Python library (use instructions below). Then, run "Demo.ipynb".

Install

Option 1: Build and install via pip:

cd PipelineProfiler
npm install
npm run build
cd ..
pip install .

Option 2: Run the docker image:

docker build -t pipelineprofiler
docker run -p 9999:8888 pipelineprofiler

Then copy the access token and log in to jupyter in the browser url:

localhost:9999

Data preprocessing

PipelineProfiler reads data from the D3M Metalearning database. You can download this data from: https://metalearning.datadrivendiscovery.org/dumps/2020/03/04/metalearningdb_dump_20200304.tar.gz

You need to merge two files in order to explore the pipelines: pipelines.json and pipeline_runs.json. To do so, run

python -m PipelineProfiler.pipeline_merge [-n NUMBER_PIPELINES] pipeline_runs_file pipelines_file output_file

Pipeline exploration

import PipelineProfiler
import json

In a jupyter notebook, load the output_file

with open("output_file.json", "r") as f:
    pipelines = json.load(f)

and then plot it using:

PipelineProfiler.plot_pipeline_matrix(pipelines[:10])

Data postprocessing

You might want to group pipelines by problem type, and select the top k pipelines from each team. To do so, use the code:

def get_top_k_pipelines_team(pipelines, k):
    team_pipelines = defaultdict(list)
    for pipeline in pipelines:
        source = pipeline['pipeline_source']['name']
        team_pipelines[source].append(pipeline)
    for team in team_pipelines.keys():
        team_pipelines[team] = sorted(team_pipelines[team], key=lambda x: x['scores'][0]['normalized'], reverse=True)
        team_pipelines[team] = team_pipelines[team][:k]
    new_pipelines = []
    for team in team_pipelines.keys():
        new_pipelines.extend(team_pipelines[team])
    return new_pipelines

def sort_pipeline_scores(pipelines):
    return sorted(pipelines, key=lambda x: x['scores'][0]['value'], reverse=True)    

pipelines_problem = {}
for pipeline in pipelines:  
    problem_id = pipeline['problem']['id']
    if problem_id not in pipelines_problem:
        pipelines_problem[problem_id] = []
    pipelines_problem[problem_id].append(pipeline)
for problem in pipelines_problem.keys():
    pipelines_problem[problem] = sort_pipeline_scores(get_top_k_pipelines_team(pipelines_problem[problem], k=100))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pipelineprofiler-0.1.0.tar.gz (846.3 kB view details)

Uploaded Source

Built Distribution

pipelineprofiler-0.1.0-py3-none-any.whl (856.9 kB view details)

Uploaded Python 3

File details

Details for the file pipelineprofiler-0.1.0.tar.gz.

File metadata

  • Download URL: pipelineprofiler-0.1.0.tar.gz
  • Upload date:
  • Size: 846.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for pipelineprofiler-0.1.0.tar.gz
Algorithm Hash digest
SHA256 ea7f080b859f09096994dc0a3fc9d93c26bba734fc3fe1841602818cd110af28
MD5 42964b5375a241c382e9b10250038e3a
BLAKE2b-256 675f7b36051b6e444f29c1e0d12acda62c58b407d46ceb13f4bc7f33dfceb4b4

See more details on using hashes here.

File details

Details for the file pipelineprofiler-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: pipelineprofiler-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 856.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for pipelineprofiler-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 48562defff8ca5e2f4f235cad348ed6379dc2fbf697ed582da59d4f1ea8d905f
MD5 e7ab82fdd400c0bd96c762223d6ebd57
BLAKE2b-256 3875eb85691d4d77d2193aa252a450c864197ecd78a54e10f2a61fc86db96269

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page