Skip to main content

Pipeline Profiler tool. Enables the exploration of D3M pipelines in Jupyter Notebooks

Project description

PipelineProfiler

AutoML Pipeline exploration tool compatible with Jupyter Notebooks. Supports auto-sklearn and D3M pipeline format.

arxiv badge

System screen

(Shift click to select multiple pipelines)

Paper: https://arxiv.org/abs/2005.00160

Video: https://youtu.be/2WSYoaxLLJ8

Demo

Live demo (Google Colab):

In Jupyter Notebook:

import PipelineProfiler
data = PipelineProfiler.get_heartstatlog_data()
PipelineProfiler.plot_pipeline_matrix(data)

Install

Option 1: install via pip:

pip install pipelineprofiler

Option 2: Run the docker image:

docker build -t pipelineprofiler .
docker run -p 9999:8888 pipelineprofiler

Then copy the access token and log in to jupyter in the browser url:

localhost:9999

Data preprocessing

PipelineProfiler reads data from the D3M Metalearning database. You can download this data from: https://metalearning.datadrivendiscovery.org/dumps/2020/03/04/metalearningdb_dump_20200304.tar.gz

You need to merge two files in order to explore the pipelines: pipelines.json and pipeline_runs.json. To do so, run

python -m PipelineProfiler.pipeline_merge [-n NUMBER_PIPELINES] pipeline_runs_file pipelines_file output_file

Pipeline exploration

import PipelineProfiler
import json

In a jupyter notebook, load the output_file

with open("output_file.json", "r") as f:
    pipelines = json.load(f)

and then plot it using:

PipelineProfiler.plot_pipeline_matrix(pipelines[:10])

Data postprocessing

You might want to group pipelines by problem type, and select the top k pipelines from each team. To do so, use the code:

def get_top_k_pipelines_team(pipelines, k):
    team_pipelines = defaultdict(list)
    for pipeline in pipelines:
        source = pipeline['pipeline_source']['name']
        team_pipelines[source].append(pipeline)
    for team in team_pipelines.keys():
        team_pipelines[team] = sorted(team_pipelines[team], key=lambda x: x['scores'][0]['normalized'], reverse=True)
        team_pipelines[team] = team_pipelines[team][:k]
    new_pipelines = []
    for team in team_pipelines.keys():
        new_pipelines.extend(team_pipelines[team])
    return new_pipelines

def sort_pipeline_scores(pipelines):
    return sorted(pipelines, key=lambda x: x['scores'][0]['value'], reverse=True)    

pipelines_problem = {}
for pipeline in pipelines:  
    problem_id = pipeline['problem']['id']
    if problem_id not in pipelines_problem:
        pipelines_problem[problem_id] = []
    pipelines_problem[problem_id].append(pipeline)
for problem in pipelines_problem.keys():
    pipelines_problem[problem] = sort_pipeline_scores(get_top_k_pipelines_team(pipelines_problem[problem], k=100))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pipelineprofiler-0.1.11.tar.gz (867.5 kB view details)

Uploaded Source

Built Distribution

pipelineprofiler-0.1.11-py3-none-any.whl (878.6 kB view details)

Uploaded Python 3

File details

Details for the file pipelineprofiler-0.1.11.tar.gz.

File metadata

  • Download URL: pipelineprofiler-0.1.11.tar.gz
  • Upload date:
  • Size: 867.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for pipelineprofiler-0.1.11.tar.gz
Algorithm Hash digest
SHA256 e54f5012194484842c4c40005aa2bc952450dbf3f9c4f5c34c39a245e2fdaf63
MD5 355aa208a870a618c202b295b4218a77
BLAKE2b-256 fd9b7f61cab3b3a02cd1983b7f16897086d224681d7683f589eabb892d776df1

See more details on using hashes here.

File details

Details for the file pipelineprofiler-0.1.11-py3-none-any.whl.

File metadata

  • Download URL: pipelineprofiler-0.1.11-py3-none-any.whl
  • Upload date:
  • Size: 878.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for pipelineprofiler-0.1.11-py3-none-any.whl
Algorithm Hash digest
SHA256 62b232004ca521d328c3a2c075535c16ae98a84989c52d13384caa00ad12cc38
MD5 c0ecabe14642a02597752ef9d8ae4656
BLAKE2b-256 2a4417e409793ab20119e58def1c0d929407e4ec4e7531e0af2b9ad557d27f03

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page