Skip to main content

Pipeline Profiler tool. Enables the exploration of D3M pipelines in Jupyter Notebooks

Project description

PipelineProfiler

AutoML Pipeline exploration tool compatible with Jupyter Notebooks. Supports auto-sklearn and D3M pipeline format.

arxiv badge

System screen

(Shift click to select multiple pipelines)

Paper: https://arxiv.org/abs/2005.00160

Video: https://youtu.be/2WSYoaxLLJ8

Demo

Live demo (Google Colab):

In Jupyter Notebook:

import PipelineProfiler
data = PipelineProfiler.get_heartstatlog_data()
PipelineProfiler.plot_pipeline_matrix(data)

Install

Option 1: install via pip:

pip install pipelineprofiler

Option 2: Run the docker image:

docker build -t pipelineprofiler .
docker run -p 9999:8888 pipelineprofiler

Then copy the access token and log in to jupyter in the browser url:

localhost:9999

Data preprocessing

PipelineProfiler reads data from the D3M Metalearning database. You can download this data from: https://metalearning.datadrivendiscovery.org/dumps/2020/03/04/metalearningdb_dump_20200304.tar.gz

You need to merge two files in order to explore the pipelines: pipelines.json and pipeline_runs.json. To do so, run

python -m PipelineProfiler.pipeline_merge [-n NUMBER_PIPELINES] pipeline_runs_file pipelines_file output_file

Pipeline exploration

import PipelineProfiler
import json

In a jupyter notebook, load the output_file

with open("output_file.json", "r") as f:
    pipelines = json.load(f)

and then plot it using:

PipelineProfiler.plot_pipeline_matrix(pipelines[:10])

Data postprocessing

You might want to group pipelines by problem type, and select the top k pipelines from each team. To do so, use the code:

def get_top_k_pipelines_team(pipelines, k):
    team_pipelines = defaultdict(list)
    for pipeline in pipelines:
        source = pipeline['pipeline_source']['name']
        team_pipelines[source].append(pipeline)
    for team in team_pipelines.keys():
        team_pipelines[team] = sorted(team_pipelines[team], key=lambda x: x['scores'][0]['normalized'], reverse=True)
        team_pipelines[team] = team_pipelines[team][:k]
    new_pipelines = []
    for team in team_pipelines.keys():
        new_pipelines.extend(team_pipelines[team])
    return new_pipelines

def sort_pipeline_scores(pipelines):
    return sorted(pipelines, key=lambda x: x['scores'][0]['value'], reverse=True)    

pipelines_problem = {}
for pipeline in pipelines:  
    problem_id = pipeline['problem']['id']
    if problem_id not in pipelines_problem:
        pipelines_problem[problem_id] = []
    pipelines_problem[problem_id].append(pipeline)
for problem in pipelines_problem.keys():
    pipelines_problem[problem] = sort_pipeline_scores(get_top_k_pipelines_team(pipelines_problem[problem], k=100))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pipelineprofiler-0.1.12.tar.gz (867.5 kB view details)

Uploaded Source

Built Distribution

pipelineprofiler-0.1.12-py3-none-any.whl (878.8 kB view details)

Uploaded Python 3

File details

Details for the file pipelineprofiler-0.1.12.tar.gz.

File metadata

  • Download URL: pipelineprofiler-0.1.12.tar.gz
  • Upload date:
  • Size: 867.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for pipelineprofiler-0.1.12.tar.gz
Algorithm Hash digest
SHA256 72a1f5cdccfaf8af753a93d91a2d81c9230472e7d7ee5f66435177912e868276
MD5 fa9f0e8bc4ba71d7ed55527bc7da3a89
BLAKE2b-256 5c46cf52d5bd52a5021adab09a159bb5806b8a1506d3d64d7b2e02c599365040

See more details on using hashes here.

File details

Details for the file pipelineprofiler-0.1.12-py3-none-any.whl.

File metadata

  • Download URL: pipelineprofiler-0.1.12-py3-none-any.whl
  • Upload date:
  • Size: 878.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for pipelineprofiler-0.1.12-py3-none-any.whl
Algorithm Hash digest
SHA256 14be8d694bc61090d52b04f1fb67871a51d296a70bd5cd8023a91e801b6133f3
MD5 09089d5eb42cc32cdbbfbe5167efa39d
BLAKE2b-256 5b2957977f17f324f8b97257c161a53224f2913aa1df74e7e2daac296557a76c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page