Skip to main content

Pipeline Profiler tool. Enables the exploration of D3M pipelines in Jupyter Notebooks

Project description

PipelineProfiler

AutoML Pipeline exploration tool compatible with Jupyter Notebooks. Supports auto-sklearn and D3M pipeline format.

arxiv badge

System screen

(Shift click to select multiple pipelines)

Paper: https://arxiv.org/abs/2005.00160

Video: https://youtu.be/2WSYoaxLLJ8

Blog: Medium post

Demo

Live demo (Google Colab):

In Jupyter Notebook:

import PipelineProfiler
data = PipelineProfiler.get_heartstatlog_data()
PipelineProfiler.plot_pipeline_matrix(data)

Install

Option 1: install via pip:

pip install pipelineprofiler

Option 2: Run the docker image:

docker build -t pipelineprofiler .
docker run -p 9999:8888 pipelineprofiler

Then copy the access token and log in to jupyter in the browser url:

localhost:9999

Data preprocessing

PipelineProfiler reads data from the D3M Metalearning database. You can download this data from: https://metalearning.datadrivendiscovery.org/dumps/2020/03/04/metalearningdb_dump_20200304.tar.gz

You need to merge two files in order to explore the pipelines: pipelines.json and pipeline_runs.json. To do so, run

python -m PipelineProfiler.pipeline_merge [-n NUMBER_PIPELINES] pipeline_runs_file pipelines_file output_file

Pipeline exploration

import PipelineProfiler
import json

In a jupyter notebook, load the output_file

with open("output_file.json", "r") as f:
    pipelines = json.load(f)

and then plot it using:

PipelineProfiler.plot_pipeline_matrix(pipelines[:10])

Data postprocessing

You might want to group pipelines by problem type, and select the top k pipelines from each team. To do so, use the code:

def get_top_k_pipelines_team(pipelines, k):
    team_pipelines = defaultdict(list)
    for pipeline in pipelines:
        source = pipeline['pipeline_source']['name']
        team_pipelines[source].append(pipeline)
    for team in team_pipelines.keys():
        team_pipelines[team] = sorted(team_pipelines[team], key=lambda x: x['scores'][0]['normalized'], reverse=True)
        team_pipelines[team] = team_pipelines[team][:k]
    new_pipelines = []
    for team in team_pipelines.keys():
        new_pipelines.extend(team_pipelines[team])
    return new_pipelines

def sort_pipeline_scores(pipelines):
    return sorted(pipelines, key=lambda x: x['scores'][0]['value'], reverse=True)    

pipelines_problem = {}
for pipeline in pipelines:  
    problem_id = pipeline['problem']['id']
    if problem_id not in pipelines_problem:
        pipelines_problem[problem_id] = []
    pipelines_problem[problem_id].append(pipeline)
for problem in pipelines_problem.keys():
    pipelines_problem[problem] = sort_pipeline_scores(get_top_k_pipelines_team(pipelines_problem[problem], k=100))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pipelineprofiler-0.1.14.tar.gz (868.0 kB view details)

Uploaded Source

Built Distribution

pipelineprofiler-0.1.14-py3-none-any.whl (879.1 kB view details)

Uploaded Python 3

File details

Details for the file pipelineprofiler-0.1.14.tar.gz.

File metadata

  • Download URL: pipelineprofiler-0.1.14.tar.gz
  • Upload date:
  • Size: 868.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for pipelineprofiler-0.1.14.tar.gz
Algorithm Hash digest
SHA256 2687aab3eadeb1d53385aaa57debd90eaf4ee2f01a20baddab8107497bbf121c
MD5 c198b84ba7c212f7ea68cb5af97e1cb0
BLAKE2b-256 116aec7166c51cc17058e22bd850ff076bbf06c7cb10f29e6788d8243bbc3ab1

See more details on using hashes here.

File details

Details for the file pipelineprofiler-0.1.14-py3-none-any.whl.

File metadata

  • Download URL: pipelineprofiler-0.1.14-py3-none-any.whl
  • Upload date:
  • Size: 879.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for pipelineprofiler-0.1.14-py3-none-any.whl
Algorithm Hash digest
SHA256 1705d0ccd828b714ac6fe9d821c7a5ab64c25839704ea6a11bb60a21dd0f154b
MD5 058f83837c20f3ff3908c94b122342ed
BLAKE2b-256 e60ff3693a87f98ea2f1e7642ac77e96d688594d6b6fcb82ae297fb5fdeabf3c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page