Skip to main content

Pipeline Profiler tool. Enables the exploration of D3M pipelines in Jupyter Notebooks

Project description

PipelineProfiler

AutoML Pipeline exploration tool compatible with Jupyter Notebooks. Supports auto-sklearn and D3M pipeline format.

arxiv badge

System screen

(Shift click to select multiple pipelines)

Paper: https://arxiv.org/abs/2005.00160

Video: https://youtu.be/2WSYoaxLLJ8

Blog: Medium post

Demo

Live demo (Google Colab):

In Jupyter Notebook:

import PipelineProfiler
data = PipelineProfiler.get_heartstatlog_data()
PipelineProfiler.plot_pipeline_matrix(data)

Install

Option 1: install via pip:

pip install pipelineprofiler

Option 2: Run the docker image:

docker build -t pipelineprofiler .
docker run -p 9999:8888 pipelineprofiler

Then copy the access token and log in to jupyter in the browser url:

localhost:9999

Data preprocessing

PipelineProfiler reads data from the D3M Metalearning database. You can download this data from: https://metalearning.datadrivendiscovery.org/dumps/2020/03/04/metalearningdb_dump_20200304.tar.gz

You need to merge two files in order to explore the pipelines: pipelines.json and pipeline_runs.json. To do so, run

python -m PipelineProfiler.pipeline_merge [-n NUMBER_PIPELINES] pipeline_runs_file pipelines_file output_file

Pipeline exploration

import PipelineProfiler
import json

In a jupyter notebook, load the output_file

with open("output_file.json", "r") as f:
    pipelines = json.load(f)

and then plot it using:

PipelineProfiler.plot_pipeline_matrix(pipelines[:10])

Data postprocessing

You might want to group pipelines by problem type, and select the top k pipelines from each team. To do so, use the code:

def get_top_k_pipelines_team(pipelines, k):
    team_pipelines = defaultdict(list)
    for pipeline in pipelines:
        source = pipeline['pipeline_source']['name']
        team_pipelines[source].append(pipeline)
    for team in team_pipelines.keys():
        team_pipelines[team] = sorted(team_pipelines[team], key=lambda x: x['scores'][0]['normalized'], reverse=True)
        team_pipelines[team] = team_pipelines[team][:k]
    new_pipelines = []
    for team in team_pipelines.keys():
        new_pipelines.extend(team_pipelines[team])
    return new_pipelines

def sort_pipeline_scores(pipelines):
    return sorted(pipelines, key=lambda x: x['scores'][0]['value'], reverse=True)    

pipelines_problem = {}
for pipeline in pipelines:  
    problem_id = pipeline['problem']['id']
    if problem_id not in pipelines_problem:
        pipelines_problem[problem_id] = []
    pipelines_problem[problem_id].append(pipeline)
for problem in pipelines_problem.keys():
    pipelines_problem[problem] = sort_pipeline_scores(get_top_k_pipelines_team(pipelines_problem[problem], k=100))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pipelineprofiler-0.1.15.tar.gz (868.0 kB view details)

Uploaded Source

Built Distribution

pipelineprofiler-0.1.15-py3-none-any.whl (879.1 kB view details)

Uploaded Python 3

File details

Details for the file pipelineprofiler-0.1.15.tar.gz.

File metadata

  • Download URL: pipelineprofiler-0.1.15.tar.gz
  • Upload date:
  • Size: 868.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for pipelineprofiler-0.1.15.tar.gz
Algorithm Hash digest
SHA256 d63f5d78313f7d77aa0d88f822af18c373a714bb2da33cb062dc45a2563a86ac
MD5 49ce7f13c7d357ab986941cb0af1d7da
BLAKE2b-256 ce8a5b38d8ff8f2358d9effa98378a26b9a66890ae031a7fbd7d6122008a23c3

See more details on using hashes here.

File details

Details for the file pipelineprofiler-0.1.15-py3-none-any.whl.

File metadata

  • Download URL: pipelineprofiler-0.1.15-py3-none-any.whl
  • Upload date:
  • Size: 879.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for pipelineprofiler-0.1.15-py3-none-any.whl
Algorithm Hash digest
SHA256 7cb15c64cc41ebd565b671e250b09861277b8ff0833027338845174721e187f5
MD5 7f12eca1cab12f4372d59b02cbce82a2
BLAKE2b-256 b91a044138411dfe8ed93d12e983675cb2057602406c54394c17a25be6c21914

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page