Skip to main content

Pipeline Profiler tool. Enables the exploration of D3M pipelines in Jupyter Notebooks

Project description

PipelineProfiler

AutoML Pipeline exploration tool compatible with Jupyter Notebooks.

arxiv badge

System screen

Paper: https://arxiv.org/abs/2005.00160

Demo

To use PipelineProfiler, first install the Python library (use instructions below). Then, run in Jupyter Notebook:

import PipelineProfiler
data = PipelineProfiler.get_heartstatlog_data()
PipelineProfiler.plot_pipeline_matrix(data)

Install

Option 1: install via pip:

pip install pipelineprofiler

Option 2: Run the docker image:

docker build -t pipelineprofiler .
docker run -p 9999:8888 pipelineprofiler

Then copy the access token and log in to jupyter in the browser url:

localhost:9999

Data preprocessing

PipelineProfiler reads data from the D3M Metalearning database. You can download this data from: https://metalearning.datadrivendiscovery.org/dumps/2020/03/04/metalearningdb_dump_20200304.tar.gz

You need to merge two files in order to explore the pipelines: pipelines.json and pipeline_runs.json. To do so, run

python -m PipelineProfiler.pipeline_merge [-n NUMBER_PIPELINES] pipeline_runs_file pipelines_file output_file

Pipeline exploration

import PipelineProfiler
import json

In a jupyter notebook, load the output_file

with open("output_file.json", "r") as f:
    pipelines = json.load(f)

and then plot it using:

PipelineProfiler.plot_pipeline_matrix(pipelines[:10])

Data postprocessing

You might want to group pipelines by problem type, and select the top k pipelines from each team. To do so, use the code:

def get_top_k_pipelines_team(pipelines, k):
    team_pipelines = defaultdict(list)
    for pipeline in pipelines:
        source = pipeline['pipeline_source']['name']
        team_pipelines[source].append(pipeline)
    for team in team_pipelines.keys():
        team_pipelines[team] = sorted(team_pipelines[team], key=lambda x: x['scores'][0]['normalized'], reverse=True)
        team_pipelines[team] = team_pipelines[team][:k]
    new_pipelines = []
    for team in team_pipelines.keys():
        new_pipelines.extend(team_pipelines[team])
    return new_pipelines

def sort_pipeline_scores(pipelines):
    return sorted(pipelines, key=lambda x: x['scores'][0]['value'], reverse=True)    

pipelines_problem = {}
for pipeline in pipelines:  
    problem_id = pipeline['problem']['id']
    if problem_id not in pipelines_problem:
        pipelines_problem[problem_id] = []
    pipelines_problem[problem_id].append(pipeline)
for problem in pipelines_problem.keys():
    pipelines_problem[problem] = sort_pipeline_scores(get_top_k_pipelines_team(pipelines_problem[problem], k=100))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pipelineprofiler-0.1.5.tar.gz (859.4 kB view details)

Uploaded Source

Built Distribution

pipelineprofiler-0.1.5-py3-none-any.whl (870.9 kB view details)

Uploaded Python 3

File details

Details for the file pipelineprofiler-0.1.5.tar.gz.

File metadata

  • Download URL: pipelineprofiler-0.1.5.tar.gz
  • Upload date:
  • Size: 859.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for pipelineprofiler-0.1.5.tar.gz
Algorithm Hash digest
SHA256 52f76a7ed1b8ef8550ee82cff971146f6b717767589815ffcfae68897744db97
MD5 8ee39809495f1fd3320fa62b8c02c5a7
BLAKE2b-256 8d55117eb4c2285aadad9b829642197a9e080dee3ef2e342a2d75fc0cf0fbf9d

See more details on using hashes here.

File details

Details for the file pipelineprofiler-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: pipelineprofiler-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 870.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.9

File hashes

Hashes for pipelineprofiler-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 82d80e057bbd6b80b120ac535e6a32efc70ae353464380c45013d55ed305ef2e
MD5 48b2b29adaf12c82d878647aec9111f3
BLAKE2b-256 99c474e19eef5088523a5287695a6d5c32d7c027529dacea67523a7e975a64a8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page