Skip to main content

Processing Library and Analysis Toolkit for Medical Imaging in Python

Project description

PlatiPy

Processing Library and Analysis Toolkit for Medical Imaging in Python

PlatiPy is a library of amazing tools for image processing and analysis - designed specifically for medical imaging!

Check out the PlatiPy documentation for more info.

This project was motivated by the need for a simple way to use, visualise, process, and analyse medical images. Many of the tools and algorithms are designed in the context of radiation therapy, although they are more widely applicable to other fields that use 2D, 3D, or 4D imaging.

PlatiPy is written in Python, and uses SimpleITK, VTK, and standard Python libraries. Jupyter notebooks are provided where possible, mainly for guidance on getting started with using the tools. We welcome feedback and contributions from the community (yes, you!) and you can find more information about contributing here.

What can I do with platipy?

A lot! A good place to start is by looking in the examples directory.

Some examples of what PlatiPy can do:

  • DICOM organising and converting:
    • Bulk convert from multiple series and studies with a single function
    • Convert DICOM-RT structure and dose filesto NIfTI images
    • Create DICOM-RT structure files from binary masks e.g. from automatic contouring algorithms
  • Image registration
    • Register images and transform labels with a few lines of code
    • Linear transformations: rigid, affine, similarity
    • Non-linear deformable transformations: demons, b-splines
    • Multiple metrics for optimisation
  • Atlas-based segmentation
  • Synthetic deformation field generation
    • Simulate anatomically realistic shifts, expansions, and bending
    • Compare DIR results from clinical systems
  • Basic tools for image processing and analysis
    • Computing label similarity metrics: DSC, mean distance to agreement, Hausdorff distance, and more
    • Cropping images to a region of interest
    • Rotate images and generate maximum/mean intensity projections (beams eye view modelling)

A major part of this package is visualisation, and some examples are shown below!

Visualise some contours

from platipy.imaging import ImageVisualiser

vis = ImageVisualiser(image)
vis.add_contour(contours)
fig = vis.show()

Figure 1

Register some images

from platipy.imaging.registration.linear import linear_registration

image_2_registered, tfm = linear_registration(
image_1,
image_2
)

vis = ImageVisualiser(image_1)
vis.add_comparison_overlay(image_2_registered)
fig = vis.show()

Figure 2

Calculate deformation vector fields

from platipy.imaging.registration.deformable import fast_symmetric_forces_demons_registration

image_2_deformed, tfm_dir, dvf = fast_symmetric_forces_demons_registration(
image_1,
image_2_registered
)

vis = ImageVisualiser(image_2_deformed, axis="z")
vis.add_vector_overlay(
    dvf,
    subsample=12,
    arrow_scale=1,
    arrow_width=2,
    colormap=plt.cm.magma,
    name="DVF magnitude [mm]",
    color_function="magnitude"
)
fig = vis.show()

Figure 3

Getting started

There aren't many requirements, just an installed Python interpreter (3.6 or greater). The list of required Python packages can be found in requirements.txt.

PlatiPy can be installed with pip:

pip install platipy

Authors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

platipy-0.1.3.tar.gz (119.0 kB view details)

Uploaded Source

Built Distribution

platipy-0.1.3-py3-none-any.whl (173.9 kB view details)

Uploaded Python 3

File details

Details for the file platipy-0.1.3.tar.gz.

File metadata

  • Download URL: platipy-0.1.3.tar.gz
  • Upload date:
  • Size: 119.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for platipy-0.1.3.tar.gz
Algorithm Hash digest
SHA256 77cc36cb583f0c4153f3e650d9139c55d8cb30a482c42457a6d73d5dee06e01c
MD5 2d3c3b7cc2eab8839f29f8082312e8c2
BLAKE2b-256 8945aeb086abd68ab269f7eae938fc8a6bebcd1b8aca546fb601c2c758c4d854

See more details on using hashes here.

File details

Details for the file platipy-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: platipy-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 173.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for platipy-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 7426b4d61504231f76a5b87d2b64c19e12b0217b7e3842713745e425c29fdcfb
MD5 149bca1e30a08de14073b388033ecff9
BLAKE2b-256 b541f070169c707be90ee56cf7bb05c999f6ff94e474dfc733ac48f688aca973

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page