Skip to main content

A simple python package to print a keras NN training history.

Project description

Travis CI build SonarCloud Quality SonarCloud Maintainability Codacy Maintainability Maintainability Pypi project

A python package to print a Keras model training history

How do I install this package?

As usual, just download it using pip:

pip install plot_keras_history

Tests Coverage

Since some software handling coverages sometime get slightly different results, here’s three of them:

Coveralls Coverage SonarCloud Coverage Code Climate Coverate

Usage

Let’s say you have a model generated by the function my_keras_model:

Plotting a training history

In the following example we will see how to plot and either show or save the training history:

standard

from plot_keras_history import plot_history
import matplotlib.pyplot as plt

model = my_keras_model()
history = model.fit(...).history
plot_history(history)
plt.show()
plot_history(history, path="standard.png")
plt.close()

Plotting into separate graphs

By default, the graphs are all in one big image, but for various reasons you might need them one by one:

from plot_keras_history import plot_history
import matplotlib.pyplot as plt

model = my_keras_model()
history = model.fit(...).history
plot_history(history, path="singleton", single_graphs=True)
plt.close()

Reducing the history noise with Savgol Filters

In some occasion it is necessary to be able to see the progress of the history to interpolate the results to remove a bit of noise. A parameter is offered to automatically apply a Savgol filter:

interpolated

from plot_keras_history import plot_history
import matplotlib.pyplot as plt

model = my_keras_model()
history = model.fit(...).history
plot_history(history, path="interpolated.png", interpolate=True)
plt.close()

Automatic aliases

A number of metrics are automatically converted from the default ones to more talking ones, for example “lr” becomes “Learning Rate”, or “acc” becomes “Accuracy”.

All the available options

def plot_history(
    history, # Either the history object or a pandas DataFrame. When using a dataframe, the index name is used as abscissae label.
    style:str="-", # The style of the lines.
    interpolate: bool = False, # Wethever to interpolate or not the graphs datapoints.
    side: float = 5, # Dimension of the graphs side.
    graphs_per_row: int = 4, # Number of graphs for each row.
    customization_callback: Callable = None, # Callback for customizing the graphs.
    path: str = None, # Path where to store the resulting image or images (in the case of single_graphs)
    single_graphs: bool = False #  Wethever to save the graphs as single of multiples.
)

Chaining histories

It’s common to stop and restart a model’s training, and this would break the history object into two: for this reason the method chain_histories is available:

from plot_keras_history import chain_histories

model = my_keras_model()
history1 = model.fit(...).history
history2 = model.fit(...).history
history = chain_histories(history1, history2)

Extras

Numerous additional metrics are available in extra_keras_metrics

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

plot_keras_history-1.1.14.tar.gz (5.9 kB view details)

Uploaded Source

File details

Details for the file plot_keras_history-1.1.14.tar.gz.

File metadata

  • Download URL: plot_keras_history-1.1.14.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.13.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for plot_keras_history-1.1.14.tar.gz
Algorithm Hash digest
SHA256 dadbbd16a7c2d41bc71e4aac371bae9ae7c249fb9d3bd1f8eaeb4f300d95f39b
MD5 055b7cd6ee9c49518877022edb546d1f
BLAKE2b-256 31a266058bdceaff6362d9d1b25769e6591427a65ce78156e6af7b5685cb46bd

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page