Skip to main content

Blazingly fast DataFrame library

Project description

Polars logo

Documentation: Python - Rust - Node.js - R | StackOverflow: Python - Rust - Node.js - R | User guide | Discord

Polars: Blazingly fast DataFrames in Rust, Python, Node.js, R, and SQL

Polars is a DataFrame interface on top of an OLAP Query Engine implemented in Rust using Apache Arrow Columnar Format as the memory model.

  • Lazy | eager execution
  • Multi-threaded
  • SIMD
  • Query optimization
  • Powerful expression API
  • Hybrid Streaming (larger-than-RAM datasets)
  • Rust | Python | NodeJS | R | ...

To learn more, read the user guide.

Python

>>> import polars as pl
>>> df = pl.DataFrame(
...     {
...         "A": [1, 2, 3, 4, 5],
...         "fruits": ["banana", "banana", "apple", "apple", "banana"],
...         "B": [5, 4, 3, 2, 1],
...         "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
...     }
... )

# embarrassingly parallel execution & very expressive query language
>>> df.sort("fruits").select(
...     "fruits",
...     "cars",
...     pl.lit("fruits").alias("literal_string_fruits"),
...     pl.col("B").filter(pl.col("cars") == "beetle").sum(),
...     pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"),
...     pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"),
...     pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"),
...     pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"),
... )
shape: (5, 8)
┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐
 fruits    cars      literal_stri  B    sum_A_by_ca  sum_A_by_fr  rev_A_by_fr  sort_A_by_B 
 ---       ---       ng_fruits     ---  rs           uits         uits         _by_fruits  
 str       str       ---           i64  ---          ---          ---          ---         
                     str                i64          i64          i64          i64         
╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡
 "apple"   "beetle"  "fruits"      11   4            7            4            4           
 "apple"   "beetle"  "fruits"      11   4            7            3            3           
 "banana"  "beetle"  "fruits"      11   4            8            5            5           
 "banana"  "audi"    "fruits"      11   2            8            2            2           
 "banana"  "beetle"  "fruits"      11   4            8            1            1           
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘

SQL

>>> df = pl.scan_ipc("file.arrow")
>>> # create a SQL context, registering the frame as a table
>>> sql = pl.SQLContext(my_table=df)
>>> # create a SQL query to execute
>>> query = """
...   SELECT sum(v1) as sum_v1, min(v2) as min_v2 FROM my_table
...   WHERE id1 = 'id016'
...   LIMIT 10
... """
>>> ## OPTION 1
>>> # run the query, materializing as a DataFrame
>>> sql.execute(query, eager=True)
 shape: (1, 2)
 ┌────────┬────────┐
  sum_v1  min_v2 
  ---     ---    
  i64     i64    
 ╞════════╪════════╡
  298268  1      
 └────────┴────────┘
>>> ## OPTION 2
>>> # run the query but don't immediately materialize the result.
>>> # this returns a LazyFrame that you can continue to operate on.
>>> lf = sql.execute(query)
>>> (lf.join(other_table)
...      .group_by("foo")
...      .agg(
...     pl.col("sum_v1").count()
... ).collect())

SQL commands can also be run directly from your terminal using the Polars CLI:

# run an inline SQL query
> polars -c "SELECT sum(v1) as sum_v1, min(v2) as min_v2 FROM read_ipc('file.arrow') WHERE id1 = 'id016' LIMIT 10"

# run interactively
> polars
Polars CLI v0.3.0
Type .help for help.

> SELECT sum(v1) as sum_v1, min(v2) as min_v2 FROM read_ipc('file.arrow') WHERE id1 = 'id016' LIMIT 10;

Refer to the Polars CLI repository for more information.

Performance 🚀🚀

Blazingly fast

Polars is very fast. In fact, it is one of the best performing solutions available. See the TPC-H benchmarks results.

Lightweight

Polars is also very lightweight. It comes with zero required dependencies, and this shows in the import times:

  • polars: 70ms
  • numpy: 104ms
  • pandas: 520ms

Handles larger-than-RAM data

If you have data that does not fit into memory, Polars' query engine is able to process your query (or parts of your query) in a streaming fashion. This drastically reduces memory requirements, so you might be able to process your 250GB dataset on your laptop. Collect with collect(streaming=True) to run the query streaming. (This might be a little slower, but it is still very fast!)

Setup

Python

Install the latest Polars version with:

pip install polars

We also have a conda package (conda install -c conda-forge polars), however pip is the preferred way to install Polars.

Install Polars with all optional dependencies.

pip install 'polars[all]'

You can also install a subset of all optional dependencies.

pip install 'polars[numpy,pandas,pyarrow]'

See the User Guide for more details on optional dependencies

To see the current Polars version and a full list of its optional dependencies, run:

pl.show_versions()

Releases happen quite often (weekly / every few days) at the moment, so updating Polars regularly to get the latest bugfixes / features might not be a bad idea.

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

polars = { git = "https://github.com/pola-rs/polars", rev = "<optional git tag>" }

Requires Rust version >=1.71.

Contributing

Want to contribute? Read our contributing guide.

Python: compile Polars from source

If you want a bleeding edge release or maximal performance you should compile Polars from source.

This can be done by going through the following steps in sequence:

  1. Install the latest Rust compiler

  2. Install maturin: pip install maturin

  3. cd py-polars and choose one of the following:

    • make build-release, fastest binary, very long compile times
    • make build-opt, fast binary with debug symbols, long compile times
    • make build-debug-opt, medium-speed binary with debug assertions and symbols, medium compile times
    • make build, slow binary with debug assertions and symbols, fast compile times

    Append -native (e.g. make build-release-native) to enable further optimizations specific to your CPU. This produces a non-portable binary/wheel however.

Note that the Rust crate implementing the Python bindings is called py-polars to distinguish from the wrapped Rust crate polars itself. However, both the Python package and the Python module are named polars, so you can pip install polars and import polars.

Using custom Rust functions in Python

Extending Polars with UDFs compiled in Rust is easy. We expose PyO3 extensions for DataFrame and Series data structures. See more in https://github.com/pola-rs/pyo3-polars.

Going big...

Do you expect more than 2^32 (~4.2 billion) rows? Compile Polars with the bigidx feature flag or, for Python users, install pip install polars-u64-idx.

Don't use this unless you hit the row boundary as the default build of Polars is faster and consumes less memory.

Legacy

Do you want Polars to run on an old CPU (e.g. dating from before 2011), or on an x86-64 build of Python on Apple Silicon under Rosetta? Install pip install polars-lts-cpu. This version of Polars is compiled without AVX target features.

Sponsors

JetBrains logo

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

polars_nightly-1.1.0.post20240710-cp38-abi3-win_amd64.whl (30.5 MB view details)

Uploaded CPython 3.8+ Windows x86-64

polars_nightly-1.1.0.post20240710-cp38-abi3-manylinux_2_24_aarch64.whl (28.3 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

polars_nightly-1.1.0.post20240710-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.7 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

polars_nightly-1.1.0.post20240710-cp38-abi3-macosx_11_0_arm64.whl (26.0 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

polars_nightly-1.1.0.post20240710-cp38-abi3-macosx_10_12_x86_64.whl (29.4 MB view details)

Uploaded CPython 3.8+ macOS 10.12+ x86-64

File details

Details for the file polars_nightly-1.1.0.post20240710-cp38-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.1.0.post20240710-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 cebdd7ec9162760a1adac40942cdb95d071054e64a72b603995ad0eef61279fe
MD5 5af15ec2e0247aa11fbadfdf5d02c0e4
BLAKE2b-256 ed1b68773f570c84f9dd040a5c77efa208ff1b544a73b096c784155f1951846f

See more details on using hashes here.

File details

Details for the file polars_nightly-1.1.0.post20240710-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.1.0.post20240710-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 cb9204ff2429be8f40731f257962a002786a50f9e7c5c6642f505f414f72d2d8
MD5 96bc984b880094a87e6510a112c75708
BLAKE2b-256 fc7a53a37136357f71c8b7138fc81f9d5071e4bf09555c740b7b45efd0a72e27

See more details on using hashes here.

File details

Details for the file polars_nightly-1.1.0.post20240710-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.1.0.post20240710-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0741062bf19e97c7e40c2f5008c65e1b3a12027c02d80a6ac0bb993a45a290b2
MD5 0cc2dbc8b44e1b96cc1213d5c2d5cea8
BLAKE2b-256 e56091c9ccf8a863ef3b94fc6df4716122b56a9c47701e2d39f0e80c26b89477

See more details on using hashes here.

File details

Details for the file polars_nightly-1.1.0.post20240710-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.1.0.post20240710-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7dd081748d8f56528791859562eac24e378b052830f0b91deb9a79dddcd0e224
MD5 218c520ddc5f2ba3cfbc15550322dee6
BLAKE2b-256 34408c9f011a823bd58f7b8bf4bd092adbdfb336c6070a9e5d2800d70efb77ac

See more details on using hashes here.

File details

Details for the file polars_nightly-1.1.0.post20240710-cp38-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.1.0.post20240710-cp38-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 5e2a3cf6980987b778d4778597dbc3bd450ff840d6761afaf5371f0ce8e68f0a
MD5 a83ce7051c67ec7748fb87deb5440228
BLAKE2b-256 3e4b969d6d10b1dfbbb8661681630eedd86ca9d8d9a84e9769e4efcc3e38aee3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page