Skip to main content

Blazingly fast DataFrame library

Project description

Polars logo

Documentation: Python - Rust - Node.js - R | StackOverflow: Python - Rust - Node.js - R | User guide | Discord

Polars: Blazingly fast DataFrames in Rust, Python, Node.js, R, and SQL

Polars is a DataFrame interface on top of an OLAP Query Engine implemented in Rust using Apache Arrow Columnar Format as the memory model.

  • Lazy | eager execution
  • Multi-threaded
  • SIMD
  • Query optimization
  • Powerful expression API
  • Hybrid Streaming (larger-than-RAM datasets)
  • Rust | Python | NodeJS | R | ...

To learn more, read the user guide.

Python

>>> import polars as pl
>>> df = pl.DataFrame(
...     {
...         "A": [1, 2, 3, 4, 5],
...         "fruits": ["banana", "banana", "apple", "apple", "banana"],
...         "B": [5, 4, 3, 2, 1],
...         "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
...     }
... )

# embarrassingly parallel execution & very expressive query language
>>> df.sort("fruits").select(
...     "fruits",
...     "cars",
...     pl.lit("fruits").alias("literal_string_fruits"),
...     pl.col("B").filter(pl.col("cars") == "beetle").sum(),
...     pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"),
...     pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"),
...     pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"),
...     pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"),
... )
shape: (5, 8)
┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐
 fruits    cars      literal_stri  B    sum_A_by_ca  sum_A_by_fr  rev_A_by_fr  sort_A_by_B 
 ---       ---       ng_fruits     ---  rs           uits         uits         _by_fruits  
 str       str       ---           i64  ---          ---          ---          ---         
                     str                i64          i64          i64          i64         
╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡
 "apple"   "beetle"  "fruits"      11   4            7            4            4           
 "apple"   "beetle"  "fruits"      11   4            7            3            3           
 "banana"  "beetle"  "fruits"      11   4            8            5            5           
 "banana"  "audi"    "fruits"      11   2            8            2            2           
 "banana"  "beetle"  "fruits"      11   4            8            1            1           
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘

SQL

>>> df = pl.scan_ipc("file.arrow")
>>> # create a SQL context, registering the frame as a table
>>> sql = pl.SQLContext(my_table=df)
>>> # create a SQL query to execute
>>> query = """
...   SELECT sum(v1) as sum_v1, min(v2) as min_v2 FROM my_table
...   WHERE id1 = 'id016'
...   LIMIT 10
... """
>>> ## OPTION 1
>>> # run the query, materializing as a DataFrame
>>> sql.execute(query, eager=True)
 shape: (1, 2)
 ┌────────┬────────┐
  sum_v1  min_v2 
  ---     ---    
  i64     i64    
 ╞════════╪════════╡
  298268  1      
 └────────┴────────┘
>>> ## OPTION 2
>>> # run the query but don't immediately materialize the result.
>>> # this returns a LazyFrame that you can continue to operate on.
>>> lf = sql.execute(query)
>>> (lf.join(other_table)
...      .group_by("foo")
...      .agg(
...     pl.col("sum_v1").count()
... ).collect())

SQL commands can also be run directly from your terminal using the Polars CLI:

# run an inline SQL query
> polars -c "SELECT sum(v1) as sum_v1, min(v2) as min_v2 FROM read_ipc('file.arrow') WHERE id1 = 'id016' LIMIT 10"

# run interactively
> polars
Polars CLI v0.3.0
Type .help for help.

> SELECT sum(v1) as sum_v1, min(v2) as min_v2 FROM read_ipc('file.arrow') WHERE id1 = 'id016' LIMIT 10;

Refer to the Polars CLI repository for more information.

Performance 🚀🚀

Blazingly fast

Polars is very fast. In fact, it is one of the best performing solutions available. See the TPC-H benchmarks results.

Lightweight

Polars is also very lightweight. It comes with zero required dependencies, and this shows in the import times:

  • polars: 70ms
  • numpy: 104ms
  • pandas: 520ms

Handles larger-than-RAM data

If you have data that does not fit into memory, Polars' query engine is able to process your query (or parts of your query) in a streaming fashion. This drastically reduces memory requirements, so you might be able to process your 250GB dataset on your laptop. Collect with collect(streaming=True) to run the query streaming. (This might be a little slower, but it is still very fast!)

Setup

Python

Install the latest Polars version with:

pip install polars

We also have a conda package (conda install -c conda-forge polars), however pip is the preferred way to install Polars.

Install Polars with all optional dependencies.

pip install 'polars[all]'

You can also install a subset of all optional dependencies.

pip install 'polars[numpy,pandas,pyarrow]'

See the User Guide for more details on optional dependencies

To see the current Polars version and a full list of its optional dependencies, run:

pl.show_versions()

Releases happen quite often (weekly / every few days) at the moment, so updating Polars regularly to get the latest bugfixes / features might not be a bad idea.

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

polars = { git = "https://github.com/pola-rs/polars", rev = "<optional git tag>" }

Requires Rust version >=1.71.

Contributing

Want to contribute? Read our contributing guide.

Python: compile Polars from source

If you want a bleeding edge release or maximal performance you should compile Polars from source.

This can be done by going through the following steps in sequence:

  1. Install the latest Rust compiler

  2. Install maturin: pip install maturin

  3. cd py-polars and choose one of the following:

    • make build-release, fastest binary, very long compile times
    • make build-opt, fast binary with debug symbols, long compile times
    • make build-debug-opt, medium-speed binary with debug assertions and symbols, medium compile times
    • make build, slow binary with debug assertions and symbols, fast compile times

    Append -native (e.g. make build-release-native) to enable further optimizations specific to your CPU. This produces a non-portable binary/wheel however.

Note that the Rust crate implementing the Python bindings is called py-polars to distinguish from the wrapped Rust crate polars itself. However, both the Python package and the Python module are named polars, so you can pip install polars and import polars.

Using custom Rust functions in Python

Extending Polars with UDFs compiled in Rust is easy. We expose PyO3 extensions for DataFrame and Series data structures. See more in https://github.com/pola-rs/pyo3-polars.

Going big...

Do you expect more than 2^32 (~4.2 billion) rows? Compile Polars with the bigidx feature flag or, for Python users, install pip install polars-u64-idx.

Don't use this unless you hit the row boundary as the default build of Polars is faster and consumes less memory.

Legacy

Do you want Polars to run on an old CPU (e.g. dating from before 2011), or on an x86-64 build of Python on Apple Silicon under Rosetta? Install pip install polars-lts-cpu. This version of Polars is compiled without AVX target features.

Sponsors

JetBrains logo

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

polars_nightly-1.1.0.post20240711-cp38-abi3-win_amd64.whl (30.6 MB view details)

Uploaded CPython 3.8+ Windows x86-64

polars_nightly-1.1.0.post20240711-cp38-abi3-manylinux_2_24_aarch64.whl (28.4 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

polars_nightly-1.1.0.post20240711-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.7 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

polars_nightly-1.1.0.post20240711-cp38-abi3-macosx_11_0_arm64.whl (26.0 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

polars_nightly-1.1.0.post20240711-cp38-abi3-macosx_10_12_x86_64.whl (29.4 MB view details)

Uploaded CPython 3.8+ macOS 10.12+ x86-64

File details

Details for the file polars_nightly-1.1.0.post20240711-cp38-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.1.0.post20240711-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 3cdd3f43e4c63e63d0b81cb438924385d8150467624990abf0da2ba83b324414
MD5 fdac69842f2f50000f497c596e45420f
BLAKE2b-256 a59e819de51060980e638c119c1872e70d9086fa9152578f65298c92510e9fa4

See more details on using hashes here.

File details

Details for the file polars_nightly-1.1.0.post20240711-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.1.0.post20240711-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 c352d8f5b514b272fe0fcec4a6d6d2d05866e4ed8cb7d963b53c3a9ede6f5825
MD5 00616ce650bb6990b4cab84767954de2
BLAKE2b-256 43b72268e95d2e7b9037e99d7a18c04bb89a63e000ddc22c2576f3ca4cf472ea

See more details on using hashes here.

File details

Details for the file polars_nightly-1.1.0.post20240711-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.1.0.post20240711-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 452c9e0d0f6ef968fa0ba141be36e2bf32ff084fa78739f181038d17a0fce03f
MD5 b1db9313a13f9a07e9fa92639fdf8703
BLAKE2b-256 3d70f70cedd8ce0560111e6831c8996b4317d3d509d0db321862ca5d6347d9e8

See more details on using hashes here.

File details

Details for the file polars_nightly-1.1.0.post20240711-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.1.0.post20240711-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2df5a2532322fc9c7b109e8eb717c1cff49da1221bcb6ca2d78e4da4be621ab4
MD5 4b4b86e6cfa9318092a753945d2e3516
BLAKE2b-256 7caf5b16a31a1a28435265b0fe150ee3de4b2b48acccf7520f3125b84c5f9e82

See more details on using hashes here.

File details

Details for the file polars_nightly-1.1.0.post20240711-cp38-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.1.0.post20240711-cp38-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e32c05469541e6270667569795daaa866c5500070d7d5ef015db9c6f75215ea6
MD5 33f480c48a6c6ad63def45cada630b12
BLAKE2b-256 0eaf9b8a9c9c0bd51c869e4ec611d110ef4cba8a0dfe4a802a4f5928232f2b7e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page