Skip to main content

Blazingly fast DataFrame library

Project description

Polars logo

Documentation: Python - Rust - Node.js - R | StackOverflow: Python - Rust - Node.js - R | User guide | Discord

Polars: Blazingly fast DataFrames in Rust, Python, Node.js, R, and SQL

Polars is a DataFrame interface on top of an OLAP Query Engine implemented in Rust using Apache Arrow Columnar Format as the memory model.

  • Lazy | eager execution
  • Multi-threaded
  • SIMD
  • Query optimization
  • Powerful expression API
  • Hybrid Streaming (larger-than-RAM datasets)
  • Rust | Python | NodeJS | R | ...

To learn more, read the user guide.

Python

>>> import polars as pl
>>> df = pl.DataFrame(
...     {
...         "A": [1, 2, 3, 4, 5],
...         "fruits": ["banana", "banana", "apple", "apple", "banana"],
...         "B": [5, 4, 3, 2, 1],
...         "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
...     }
... )

# embarrassingly parallel execution & very expressive query language
>>> df.sort("fruits").select(
...     "fruits",
...     "cars",
...     pl.lit("fruits").alias("literal_string_fruits"),
...     pl.col("B").filter(pl.col("cars") == "beetle").sum(),
...     pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"),
...     pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"),
...     pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"),
...     pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"),
... )
shape: (5, 8)
┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐
 fruits    cars      literal_stri  B    sum_A_by_ca  sum_A_by_fr  rev_A_by_fr  sort_A_by_B 
 ---       ---       ng_fruits     ---  rs           uits         uits         _by_fruits  
 str       str       ---           i64  ---          ---          ---          ---         
                     str                i64          i64          i64          i64         
╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡
 "apple"   "beetle"  "fruits"      11   4            7            4            4           
 "apple"   "beetle"  "fruits"      11   4            7            3            3           
 "banana"  "beetle"  "fruits"      11   4            8            5            5           
 "banana"  "audi"    "fruits"      11   2            8            2            2           
 "banana"  "beetle"  "fruits"      11   4            8            1            1           
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘

SQL

>>> df = pl.scan_csv("docs/data/iris.csv")
>>> ## OPTION 1
>>> # run SQL queries on frame-level
>>> df.sql("""
...	SELECT species,
...	  AVG(sepal_length) AS avg_sepal_length
...	FROM self
...	GROUP BY species
...	""").collect()
shape: (3, 2)
┌────────────┬──────────────────┐
 species     avg_sepal_length 
 ---         ---              
 str         f64              
╞════════════╪══════════════════╡
 Virginica   6.588            
 Versicolor  5.936            
 Setosa      5.006            
└────────────┴──────────────────┘
>>> ## OPTION 2
>>> # use pl.sql() to operate on the global context
>>> df2 = pl.LazyFrame({
...    "species": ["Setosa", "Versicolor", "Virginica"],
...    "blooming_season": ["Spring", "Summer", "Fall"]
...})
>>> pl.sql("""
... SELECT df.species,
...     AVG(df.sepal_length) AS avg_sepal_length,
...     df2.blooming_season
... FROM df
... LEFT JOIN df2 ON df.species = df2.species
... GROUP BY df.species, df2.blooming_season
... """).collect()

SQL commands can also be run directly from your terminal using the Polars CLI:

# run an inline SQL query
> polars -c "SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/data/iris.csv') GROUP BY species;"

# run interactively
> polars
Polars CLI v0.3.0
Type .help for help.

> SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/data/iris.csv') GROUP BY species;

Refer to the Polars CLI repository for more information.

Performance 🚀🚀

Blazingly fast

Polars is very fast. In fact, it is one of the best performing solutions available. See the TPC-H benchmarks results.

Lightweight

Polars is also very lightweight. It comes with zero required dependencies, and this shows in the import times:

  • polars: 70ms
  • numpy: 104ms
  • pandas: 520ms

Handles larger-than-RAM data

If you have data that does not fit into memory, Polars' query engine is able to process your query (or parts of your query) in a streaming fashion. This drastically reduces memory requirements, so you might be able to process your 250GB dataset on your laptop. Collect with collect(streaming=True) to run the query streaming. (This might be a little slower, but it is still very fast!)

Setup

Python

Install the latest Polars version with:

pip install polars

We also have a conda package (conda install -c conda-forge polars), however pip is the preferred way to install Polars.

Install Polars with all optional dependencies.

pip install 'polars[all]'

You can also install a subset of all optional dependencies.

pip install 'polars[numpy,pandas,pyarrow]'

See the User Guide for more details on optional dependencies

To see the current Polars version and a full list of its optional dependencies, run:

pl.show_versions()

Releases happen quite often (weekly / every few days) at the moment, so updating Polars regularly to get the latest bugfixes / features might not be a bad idea.

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

polars = { git = "https://github.com/pola-rs/polars", rev = "<optional git tag>" }

Requires Rust version >=1.71.

Contributing

Want to contribute? Read our contributing guide.

Python: compile Polars from source

If you want a bleeding edge release or maximal performance you should compile Polars from source.

This can be done by going through the following steps in sequence:

  1. Install the latest Rust compiler

  2. Install maturin: pip install maturin

  3. cd py-polars and choose one of the following:

    • make build-release, fastest binary, very long compile times
    • make build-opt, fast binary with debug symbols, long compile times
    • make build-debug-opt, medium-speed binary with debug assertions and symbols, medium compile times
    • make build, slow binary with debug assertions and symbols, fast compile times

    Append -native (e.g. make build-release-native) to enable further optimizations specific to your CPU. This produces a non-portable binary/wheel however.

Note that the Rust crate implementing the Python bindings is called py-polars to distinguish from the wrapped Rust crate polars itself. However, both the Python package and the Python module are named polars, so you can pip install polars and import polars.

Using custom Rust functions in Python

Extending Polars with UDFs compiled in Rust is easy. We expose PyO3 extensions for DataFrame and Series data structures. See more in https://github.com/pola-rs/pyo3-polars.

Going big...

Do you expect more than 2^32 (~4.2 billion) rows? Compile Polars with the bigidx feature flag or, for Python users, install pip install polars-u64-idx.

Don't use this unless you hit the row boundary as the default build of Polars is faster and consumes less memory.

Legacy

Do you want Polars to run on an old CPU (e.g. dating from before 2011), or on an x86-64 build of Python on Apple Silicon under Rosetta? Install pip install polars-lts-cpu. This version of Polars is compiled without AVX target features.

Sponsors

JetBrains logo

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

polars_nightly-1.3.0.post20240801-cp38-abi3-win_amd64.whl (31.1 MB view details)

Uploaded CPython 3.8+ Windows x86-64

polars_nightly-1.3.0.post20240801-cp38-abi3-manylinux_2_24_aarch64.whl (28.8 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

polars_nightly-1.3.0.post20240801-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.3 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

polars_nightly-1.3.0.post20240801-cp38-abi3-macosx_11_0_arm64.whl (26.4 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

polars_nightly-1.3.0.post20240801-cp38-abi3-macosx_10_12_x86_64.whl (29.9 MB view details)

Uploaded CPython 3.8+ macOS 10.12+ x86-64

File details

Details for the file polars_nightly-1.3.0.post20240801-cp38-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.3.0.post20240801-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 256fc18616f74d5601dc9e78b79842e8c9aab14af12b1ec0ffe6ce0ddbd03096
MD5 dc2705dedfc2fa82dbb9a0e15c0edee6
BLAKE2b-256 816874ef8eda17301984d9b28ea331e9d44a116d9ee739a9400bf6b12abee011

See more details on using hashes here.

Provenance

File details

Details for the file polars_nightly-1.3.0.post20240801-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.3.0.post20240801-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 02cc36b7a87016eb8f44712c5927c4e33114de9b2c3419ee4e47601cb0bededf
MD5 b9d664f47865f03e45e6987c52fc7d03
BLAKE2b-256 01100904e419da82f24dfc5c1d84071eecbd536ced8307e4ecdff34fc661f7a2

See more details on using hashes here.

Provenance

File details

Details for the file polars_nightly-1.3.0.post20240801-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.3.0.post20240801-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 843d5fc778e402dca473691228fc3e3ba2fdd7ff0f9d7dc443eb47d37988551e
MD5 053e0ceea16d3f8082aef0256d449903
BLAKE2b-256 d60800fcff2dc6c8c1d4a4c1156ee5c83b1baf30c7bda7f6f64efed241f9ac6e

See more details on using hashes here.

Provenance

File details

Details for the file polars_nightly-1.3.0.post20240801-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.3.0.post20240801-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d26a4a166e96e62cecaba6e882f98400ea7fbd8c40733690952ef3edf15cd236
MD5 ea851881e59c6aee827b89a4e5c2a4db
BLAKE2b-256 10b834cf045acf4548fe4c70655fa68c4c8bb1085468ff9a19db3700d620895b

See more details on using hashes here.

Provenance

File details

Details for the file polars_nightly-1.3.0.post20240801-cp38-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.3.0.post20240801-cp38-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 c27b05d74985f9926a0536c01acab1e7d41cd12cbaaba630646aeb3611837fcf
MD5 2be48658eb17effa8a5fcf942c0d05ef
BLAKE2b-256 be34523b20b05118b44917f9c966b34cf40c1250be989f7a720980182d7e7bd1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page