Skip to main content

Blazingly fast DataFrame library

Project description

Polars logo

Documentation: Python - Rust - Node.js - R | StackOverflow: Python - Rust - Node.js - R | User guide | Discord

Polars: Blazingly fast DataFrames in Rust, Python, Node.js, R, and SQL

Polars is a DataFrame interface on top of an OLAP Query Engine implemented in Rust using Apache Arrow Columnar Format as the memory model.

  • Lazy | eager execution
  • Multi-threaded
  • SIMD
  • Query optimization
  • Powerful expression API
  • Hybrid Streaming (larger-than-RAM datasets)
  • Rust | Python | NodeJS | R | ...

To learn more, read the user guide.

Python

>>> import polars as pl
>>> df = pl.DataFrame(
...     {
...         "A": [1, 2, 3, 4, 5],
...         "fruits": ["banana", "banana", "apple", "apple", "banana"],
...         "B": [5, 4, 3, 2, 1],
...         "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
...     }
... )

# embarrassingly parallel execution & very expressive query language
>>> df.sort("fruits").select(
...     "fruits",
...     "cars",
...     pl.lit("fruits").alias("literal_string_fruits"),
...     pl.col("B").filter(pl.col("cars") == "beetle").sum(),
...     pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"),
...     pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"),
...     pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"),
...     pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"),
... )
shape: (5, 8)
┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐
 fruits    cars      literal_stri  B    sum_A_by_ca  sum_A_by_fr  rev_A_by_fr  sort_A_by_B 
 ---       ---       ng_fruits     ---  rs           uits         uits         _by_fruits  
 str       str       ---           i64  ---          ---          ---          ---         
                     str                i64          i64          i64          i64         
╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡
 "apple"   "beetle"  "fruits"      11   4            7            4            4           
 "apple"   "beetle"  "fruits"      11   4            7            3            3           
 "banana"  "beetle"  "fruits"      11   4            8            5            5           
 "banana"  "audi"    "fruits"      11   2            8            2            2           
 "banana"  "beetle"  "fruits"      11   4            8            1            1           
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘

SQL

>>> df = pl.scan_csv("docs/data/iris.csv")
>>> ## OPTION 1
>>> # run SQL queries on frame-level
>>> df.sql("""
...	SELECT species,
...	  AVG(sepal_length) AS avg_sepal_length
...	FROM self
...	GROUP BY species
...	""").collect()
shape: (3, 2)
┌────────────┬──────────────────┐
 species     avg_sepal_length 
 ---         ---              
 str         f64              
╞════════════╪══════════════════╡
 Virginica   6.588            
 Versicolor  5.936            
 Setosa      5.006            
└────────────┴──────────────────┘
>>> ## OPTION 2
>>> # use pl.sql() to operate on the global context
>>> df2 = pl.LazyFrame({
...    "species": ["Setosa", "Versicolor", "Virginica"],
...    "blooming_season": ["Spring", "Summer", "Fall"]
...})
>>> pl.sql("""
... SELECT df.species,
...     AVG(df.sepal_length) AS avg_sepal_length,
...     df2.blooming_season
... FROM df
... LEFT JOIN df2 ON df.species = df2.species
... GROUP BY df.species, df2.blooming_season
... """).collect()

SQL commands can also be run directly from your terminal using the Polars CLI:

# run an inline SQL query
> polars -c "SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/data/iris.csv') GROUP BY species;"

# run interactively
> polars
Polars CLI v0.3.0
Type .help for help.

> SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/data/iris.csv') GROUP BY species;

Refer to the Polars CLI repository for more information.

Performance 🚀🚀

Blazingly fast

Polars is very fast. In fact, it is one of the best performing solutions available. See the TPC-H benchmarks results.

Lightweight

Polars is also very lightweight. It comes with zero required dependencies, and this shows in the import times:

  • polars: 70ms
  • numpy: 104ms
  • pandas: 520ms

Handles larger-than-RAM data

If you have data that does not fit into memory, Polars' query engine is able to process your query (or parts of your query) in a streaming fashion. This drastically reduces memory requirements, so you might be able to process your 250GB dataset on your laptop. Collect with collect(streaming=True) to run the query streaming. (This might be a little slower, but it is still very fast!)

Setup

Python

Install the latest Polars version with:

pip install polars

We also have a conda package (conda install -c conda-forge polars), however pip is the preferred way to install Polars.

Install Polars with all optional dependencies.

pip install 'polars[all]'

You can also install a subset of all optional dependencies.

pip install 'polars[numpy,pandas,pyarrow]'

See the User Guide for more details on optional dependencies

To see the current Polars version and a full list of its optional dependencies, run:

pl.show_versions()

Releases happen quite often (weekly / every few days) at the moment, so updating Polars regularly to get the latest bugfixes / features might not be a bad idea.

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

polars = { git = "https://github.com/pola-rs/polars", rev = "<optional git tag>" }

Requires Rust version >=1.71.

Contributing

Want to contribute? Read our contributing guide.

Python: compile Polars from source

If you want a bleeding edge release or maximal performance you should compile Polars from source.

This can be done by going through the following steps in sequence:

  1. Install the latest Rust compiler

  2. Install maturin: pip install maturin

  3. cd py-polars and choose one of the following:

    • make build-release, fastest binary, very long compile times
    • make build-opt, fast binary with debug symbols, long compile times
    • make build-debug-opt, medium-speed binary with debug assertions and symbols, medium compile times
    • make build, slow binary with debug assertions and symbols, fast compile times

    Append -native (e.g. make build-release-native) to enable further optimizations specific to your CPU. This produces a non-portable binary/wheel however.

Note that the Rust crate implementing the Python bindings is called py-polars to distinguish from the wrapped Rust crate polars itself. However, both the Python package and the Python module are named polars, so you can pip install polars and import polars.

Using custom Rust functions in Python

Extending Polars with UDFs compiled in Rust is easy. We expose PyO3 extensions for DataFrame and Series data structures. See more in https://github.com/pola-rs/pyo3-polars.

Going big...

Do you expect more than 2^32 (~4.2 billion) rows? Compile Polars with the bigidx feature flag or, for Python users, install pip install polars-u64-idx.

Don't use this unless you hit the row boundary as the default build of Polars is faster and consumes less memory.

Legacy

Do you want Polars to run on an old CPU (e.g. dating from before 2011), or on an x86-64 build of Python on Apple Silicon under Rosetta? Install pip install polars-lts-cpu. This version of Polars is compiled without AVX target features.

Sponsors

JetBrains logo

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

polars_nightly-1.4.1.post20240814-cp38-abi3-win_amd64.whl (31.3 MB view details)

Uploaded CPython 3.8+ Windows x86-64

polars_nightly-1.4.1.post20240814-cp38-abi3-manylinux_2_24_aarch64.whl (28.9 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

polars_nightly-1.4.1.post20240814-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.4 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

polars_nightly-1.4.1.post20240814-cp38-abi3-macosx_11_0_arm64.whl (26.5 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

polars_nightly-1.4.1.post20240814-cp38-abi3-macosx_10_12_x86_64.whl (30.1 MB view details)

Uploaded CPython 3.8+ macOS 10.12+ x86-64

File details

Details for the file polars_nightly-1.4.1.post20240814-cp38-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.4.1.post20240814-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 4d9e7b8f5bb0fb902f7cbdf879e37e4859828c8c4321fc5ec45966e8a8501f7e
MD5 150b8a71761dd3e7d294116425c86daa
BLAKE2b-256 49da11f532ba51d4f937acf1f3b4f26c3d48bf60e89edb806d9bdfce9679ca88

See more details on using hashes here.

File details

Details for the file polars_nightly-1.4.1.post20240814-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.4.1.post20240814-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 76736a1b2689148143ec7662a8319fa18a00cdf95622c23c0def65a57b96c56b
MD5 3e1ff7e2060a386046590c1629882fed
BLAKE2b-256 faa200ba6260ac6b7c37bbf47578027efdf1114905b79a65d38a76e625936f2f

See more details on using hashes here.

File details

Details for the file polars_nightly-1.4.1.post20240814-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.4.1.post20240814-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19ca5854a1d3f64e007188784ec9eb02e5f38e4b954469637ad8210152240280
MD5 694fc1816407b9356467521e41475ade
BLAKE2b-256 7b95bf476fa87c6d111969df3a23277930ac26385cae2b12733e2b80df37a7c9

See more details on using hashes here.

File details

Details for the file polars_nightly-1.4.1.post20240814-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.4.1.post20240814-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d178c44bfd47e590c44baf53e5f4e831298a061ebea2e5fddfb913c1c7e0d1f9
MD5 4436ac83d1734f616b03526373836356
BLAKE2b-256 08e71509151aa451dbcb4c3c51eb6e5c05cdb1080c2ae94a33a81e22e36be3e5

See more details on using hashes here.

File details

Details for the file polars_nightly-1.4.1.post20240814-cp38-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.4.1.post20240814-cp38-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 bda33dea1330f3e2e4337b8b82a252c762dfecbeb86d789705a95f406f3bbcfa
MD5 69bc9df10d8d60ec7b352b0d1e5180e8
BLAKE2b-256 f0e5524be5e54ddd74a356858bf51d81db101d7f91a219972c8e84e2005bb79d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page