Skip to main content

Blazingly fast DataFrame library

Project description

Polars logo

Documentation: Python - Rust - Node.js - R | StackOverflow: Python - Rust - Node.js - R | User guide | Discord

Polars: Blazingly fast DataFrames in Rust, Python, Node.js, R, and SQL

Polars is a DataFrame interface on top of an OLAP Query Engine implemented in Rust using Apache Arrow Columnar Format as the memory model.

  • Lazy | eager execution
  • Multi-threaded
  • SIMD
  • Query optimization
  • Powerful expression API
  • Hybrid Streaming (larger-than-RAM datasets)
  • Rust | Python | NodeJS | R | ...

To learn more, read the user guide.

Python

>>> import polars as pl
>>> df = pl.DataFrame(
...     {
...         "A": [1, 2, 3, 4, 5],
...         "fruits": ["banana", "banana", "apple", "apple", "banana"],
...         "B": [5, 4, 3, 2, 1],
...         "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
...     }
... )

# embarrassingly parallel execution & very expressive query language
>>> df.sort("fruits").select(
...     "fruits",
...     "cars",
...     pl.lit("fruits").alias("literal_string_fruits"),
...     pl.col("B").filter(pl.col("cars") == "beetle").sum(),
...     pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"),
...     pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"),
...     pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"),
...     pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"),
... )
shape: (5, 8)
┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐
 fruits    cars      literal_stri  B    sum_A_by_ca  sum_A_by_fr  rev_A_by_fr  sort_A_by_B 
 ---       ---       ng_fruits     ---  rs           uits         uits         _by_fruits  
 str       str       ---           i64  ---          ---          ---          ---         
                     str                i64          i64          i64          i64         
╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡
 "apple"   "beetle"  "fruits"      11   4            7            4            4           
 "apple"   "beetle"  "fruits"      11   4            7            3            3           
 "banana"  "beetle"  "fruits"      11   4            8            5            5           
 "banana"  "audi"    "fruits"      11   2            8            2            2           
 "banana"  "beetle"  "fruits"      11   4            8            1            1           
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘

SQL

>>> df = pl.scan_csv("docs/data/iris.csv")
>>> ## OPTION 1
>>> # run SQL queries on frame-level
>>> df.sql("""
...	SELECT species,
...	  AVG(sepal_length) AS avg_sepal_length
...	FROM self
...	GROUP BY species
...	""").collect()
shape: (3, 2)
┌────────────┬──────────────────┐
 species     avg_sepal_length 
 ---         ---              
 str         f64              
╞════════════╪══════════════════╡
 Virginica   6.588            
 Versicolor  5.936            
 Setosa      5.006            
└────────────┴──────────────────┘
>>> ## OPTION 2
>>> # use pl.sql() to operate on the global context
>>> df2 = pl.LazyFrame({
...    "species": ["Setosa", "Versicolor", "Virginica"],
...    "blooming_season": ["Spring", "Summer", "Fall"]
...})
>>> pl.sql("""
... SELECT df.species,
...     AVG(df.sepal_length) AS avg_sepal_length,
...     df2.blooming_season
... FROM df
... LEFT JOIN df2 ON df.species = df2.species
... GROUP BY df.species, df2.blooming_season
... """).collect()

SQL commands can also be run directly from your terminal using the Polars CLI:

# run an inline SQL query
> polars -c "SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/data/iris.csv') GROUP BY species;"

# run interactively
> polars
Polars CLI v0.3.0
Type .help for help.

> SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/data/iris.csv') GROUP BY species;

Refer to the Polars CLI repository for more information.

Performance 🚀🚀

Blazingly fast

Polars is very fast. In fact, it is one of the best performing solutions available. See the TPC-H benchmarks results.

Lightweight

Polars is also very lightweight. It comes with zero required dependencies, and this shows in the import times:

  • polars: 70ms
  • numpy: 104ms
  • pandas: 520ms

Handles larger-than-RAM data

If you have data that does not fit into memory, Polars' query engine is able to process your query (or parts of your query) in a streaming fashion. This drastically reduces memory requirements, so you might be able to process your 250GB dataset on your laptop. Collect with collect(streaming=True) to run the query streaming. (This might be a little slower, but it is still very fast!)

Setup

Python

Install the latest Polars version with:

pip install polars

We also have a conda package (conda install -c conda-forge polars), however pip is the preferred way to install Polars.

Install Polars with all optional dependencies.

pip install 'polars[all]'

You can also install a subset of all optional dependencies.

pip install 'polars[numpy,pandas,pyarrow]'

See the User Guide for more details on optional dependencies

To see the current Polars version and a full list of its optional dependencies, run:

pl.show_versions()

Releases happen quite often (weekly / every few days) at the moment, so updating Polars regularly to get the latest bugfixes / features might not be a bad idea.

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

polars = { git = "https://github.com/pola-rs/polars", rev = "<optional git tag>" }

Requires Rust version >=1.79.

Contributing

Want to contribute? Read our contributing guide.

Python: compile Polars from source

If you want a bleeding edge release or maximal performance you should compile Polars from source.

This can be done by going through the following steps in sequence:

  1. Install the latest Rust compiler

  2. Install maturin: pip install maturin

  3. cd py-polars and choose one of the following:

    • make build-release, fastest binary, very long compile times
    • make build-opt, fast binary with debug symbols, long compile times
    • make build-debug-opt, medium-speed binary with debug assertions and symbols, medium compile times
    • make build, slow binary with debug assertions and symbols, fast compile times

    Append -native (e.g. make build-release-native) to enable further optimizations specific to your CPU. This produces a non-portable binary/wheel however.

Note that the Rust crate implementing the Python bindings is called py-polars to distinguish from the wrapped Rust crate polars itself. However, both the Python package and the Python module are named polars, so you can pip install polars and import polars.

Using custom Rust functions in Python

Extending Polars with UDFs compiled in Rust is easy. We expose PyO3 extensions for DataFrame and Series data structures. See more in https://github.com/pola-rs/pyo3-polars.

Going big...

Do you expect more than 2^32 (~4.2 billion) rows? Compile Polars with the bigidx feature flag or, for Python users, install pip install polars-u64-idx.

Don't use this unless you hit the row boundary as the default build of Polars is faster and consumes less memory.

Legacy

Do you want Polars to run on an old CPU (e.g. dating from before 2011), or on an x86-64 build of Python on Apple Silicon under Rosetta? Install pip install polars-lts-cpu. This version of Polars is compiled without AVX target features.

Sponsors

JetBrains logo

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

polars_nightly-1.5.0.post20240818-cp38-abi3-win_amd64.whl (31.2 MB view details)

Uploaded CPython 3.8+ Windows x86-64

polars_nightly-1.5.0.post20240818-cp38-abi3-manylinux_2_24_aarch64.whl (29.0 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

polars_nightly-1.5.0.post20240818-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.4 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

polars_nightly-1.5.0.post20240818-cp38-abi3-macosx_11_0_arm64.whl (26.7 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

polars_nightly-1.5.0.post20240818-cp38-abi3-macosx_10_12_x86_64.whl (30.1 MB view details)

Uploaded CPython 3.8+ macOS 10.12+ x86-64

File details

Details for the file polars_nightly-1.5.0.post20240818-cp38-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.5.0.post20240818-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 782bcfe5986ddec1fa63da0a66a53a8500f2295a483864787cdbe211dae0dfec
MD5 e29c91cffb7c2cd9046e83e54c319694
BLAKE2b-256 9848ea4f50edc72faeb2742e0dc57a7c8f593470f942ac41857c9a19448fe924

See more details on using hashes here.

File details

Details for the file polars_nightly-1.5.0.post20240818-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.5.0.post20240818-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 c39ff8cd84d6243deb5ae3106c714c8b0b871dfc2140e7fb7a3854d0ee075411
MD5 0c99d36f11ca6382ff9387b0b28e96e8
BLAKE2b-256 6dc1d1dc9f7056a2326ae01dba5124c0032d76b5c7689466b337b76c7506b735

See more details on using hashes here.

File details

Details for the file polars_nightly-1.5.0.post20240818-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.5.0.post20240818-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 72e825b5d060ccfd0ab227336ddb0a54059b03c7b5353afd6b48dd63199fd902
MD5 8a32a7f90e03c213f24aebcbf778e0ff
BLAKE2b-256 be9b4da1ca0221da442076c5410316207635325d2d789b0a4822b337dc7bf737

See more details on using hashes here.

File details

Details for the file polars_nightly-1.5.0.post20240818-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.5.0.post20240818-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c38ae2734075a234828e1122b891e13a4873fd3c43ea1d2e40b3e2a9cdc1b9d8
MD5 62b3e602a3eca9de2a35551cc399d5d9
BLAKE2b-256 c87e5b9843f7c02d1719ed03603788feedc75dff38698b4b27e6b37c34a9a8dc

See more details on using hashes here.

File details

Details for the file polars_nightly-1.5.0.post20240818-cp38-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.5.0.post20240818-cp38-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 615eec02394397127c3148467b100c76741fedbe6eeb8d46758ed64279550663
MD5 21beef05f086ee95630d33b9db332648
BLAKE2b-256 38807cc5fce2889e7b5753c17b478f307c53eab32e5d0cd78d32c1b69ea888cb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page