Skip to main content

Blazingly fast DataFrame library

Project description

Polars logo

Documentation: Python - Rust - Node.js - R | StackOverflow: Python - Rust - Node.js - R | User guide | Discord

Polars: Blazingly fast DataFrames in Rust, Python, Node.js, R, and SQL

Polars is a DataFrame interface on top of an OLAP Query Engine implemented in Rust using Apache Arrow Columnar Format as the memory model.

  • Lazy | eager execution
  • Multi-threaded
  • SIMD
  • Query optimization
  • Powerful expression API
  • Hybrid Streaming (larger-than-RAM datasets)
  • Rust | Python | NodeJS | R | ...

To learn more, read the user guide.

Python

>>> import polars as pl
>>> df = pl.DataFrame(
...     {
...         "A": [1, 2, 3, 4, 5],
...         "fruits": ["banana", "banana", "apple", "apple", "banana"],
...         "B": [5, 4, 3, 2, 1],
...         "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
...     }
... )

# embarrassingly parallel execution & very expressive query language
>>> df.sort("fruits").select(
...     "fruits",
...     "cars",
...     pl.lit("fruits").alias("literal_string_fruits"),
...     pl.col("B").filter(pl.col("cars") == "beetle").sum(),
...     pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"),
...     pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"),
...     pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"),
...     pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"),
... )
shape: (5, 8)
┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐
 fruits    cars      literal_stri  B    sum_A_by_ca  sum_A_by_fr  rev_A_by_fr  sort_A_by_B 
 ---       ---       ng_fruits     ---  rs           uits         uits         _by_fruits  
 str       str       ---           i64  ---          ---          ---          ---         
                     str                i64          i64          i64          i64         
╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡
 "apple"   "beetle"  "fruits"      11   4            7            4            4           
 "apple"   "beetle"  "fruits"      11   4            7            3            3           
 "banana"  "beetle"  "fruits"      11   4            8            5            5           
 "banana"  "audi"    "fruits"      11   2            8            2            2           
 "banana"  "beetle"  "fruits"      11   4            8            1            1           
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘

SQL

>>> df = pl.scan_csv("docs/data/iris.csv")
>>> ## OPTION 1
>>> # run SQL queries on frame-level
>>> df.sql("""
...	SELECT species,
...	  AVG(sepal_length) AS avg_sepal_length
...	FROM self
...	GROUP BY species
...	""").collect()
shape: (3, 2)
┌────────────┬──────────────────┐
 species     avg_sepal_length 
 ---         ---              
 str         f64              
╞════════════╪══════════════════╡
 Virginica   6.588            
 Versicolor  5.936            
 Setosa      5.006            
└────────────┴──────────────────┘
>>> ## OPTION 2
>>> # use pl.sql() to operate on the global context
>>> df2 = pl.LazyFrame({
...    "species": ["Setosa", "Versicolor", "Virginica"],
...    "blooming_season": ["Spring", "Summer", "Fall"]
...})
>>> pl.sql("""
... SELECT df.species,
...     AVG(df.sepal_length) AS avg_sepal_length,
...     df2.blooming_season
... FROM df
... LEFT JOIN df2 ON df.species = df2.species
... GROUP BY df.species, df2.blooming_season
... """).collect()

SQL commands can also be run directly from your terminal using the Polars CLI:

# run an inline SQL query
> polars -c "SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/data/iris.csv') GROUP BY species;"

# run interactively
> polars
Polars CLI v0.3.0
Type .help for help.

> SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/data/iris.csv') GROUP BY species;

Refer to the Polars CLI repository for more information.

Performance 🚀🚀

Blazingly fast

Polars is very fast. In fact, it is one of the best performing solutions available. See the TPC-H benchmarks results.

Lightweight

Polars is also very lightweight. It comes with zero required dependencies, and this shows in the import times:

  • polars: 70ms
  • numpy: 104ms
  • pandas: 520ms

Handles larger-than-RAM data

If you have data that does not fit into memory, Polars' query engine is able to process your query (or parts of your query) in a streaming fashion. This drastically reduces memory requirements, so you might be able to process your 250GB dataset on your laptop. Collect with collect(streaming=True) to run the query streaming. (This might be a little slower, but it is still very fast!)

Setup

Python

Install the latest Polars version with:

pip install polars

We also have a conda package (conda install -c conda-forge polars), however pip is the preferred way to install Polars.

Install Polars with all optional dependencies.

pip install 'polars[all]'

You can also install a subset of all optional dependencies.

pip install 'polars[numpy,pandas,pyarrow]'

See the User Guide for more details on optional dependencies

To see the current Polars version and a full list of its optional dependencies, run:

pl.show_versions()

Releases happen quite often (weekly / every few days) at the moment, so updating Polars regularly to get the latest bugfixes / features might not be a bad idea.

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

polars = { git = "https://github.com/pola-rs/polars", rev = "<optional git tag>" }

Requires Rust version >=1.79.

Contributing

Want to contribute? Read our contributing guide.

Python: compile Polars from source

If you want a bleeding edge release or maximal performance you should compile Polars from source.

This can be done by going through the following steps in sequence:

  1. Install the latest Rust compiler

  2. Install maturin: pip install maturin

  3. cd py-polars and choose one of the following:

    • make build-release, fastest binary, very long compile times
    • make build-opt, fast binary with debug symbols, long compile times
    • make build-debug-opt, medium-speed binary with debug assertions and symbols, medium compile times
    • make build, slow binary with debug assertions and symbols, fast compile times

    Append -native (e.g. make build-release-native) to enable further optimizations specific to your CPU. This produces a non-portable binary/wheel however.

Note that the Rust crate implementing the Python bindings is called py-polars to distinguish from the wrapped Rust crate polars itself. However, both the Python package and the Python module are named polars, so you can pip install polars and import polars.

Using custom Rust functions in Python

Extending Polars with UDFs compiled in Rust is easy. We expose PyO3 extensions for DataFrame and Series data structures. See more in https://github.com/pola-rs/pyo3-polars.

Going big...

Do you expect more than 2^32 (~4.2 billion) rows? Compile Polars with the bigidx feature flag or, for Python users, install pip install polars-u64-idx.

Don't use this unless you hit the row boundary as the default build of Polars is faster and consumes less memory.

Legacy

Do you want Polars to run on an old CPU (e.g. dating from before 2011), or on an x86-64 build of Python on Apple Silicon under Rosetta? Install pip install polars-lts-cpu. This version of Polars is compiled without AVX target features.

Sponsors

JetBrains logo

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

polars_nightly-1.5.0.post20240819-cp38-abi3-win_amd64.whl (31.2 MB view details)

Uploaded CPython 3.8+ Windows x86-64

polars_nightly-1.5.0.post20240819-cp38-abi3-manylinux_2_24_aarch64.whl (29.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

polars_nightly-1.5.0.post20240819-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.5 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

polars_nightly-1.5.0.post20240819-cp38-abi3-macosx_11_0_arm64.whl (26.7 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

polars_nightly-1.5.0.post20240819-cp38-abi3-macosx_10_12_x86_64.whl (30.1 MB view details)

Uploaded CPython 3.8+ macOS 10.12+ x86-64

File details

Details for the file polars_nightly-1.5.0.post20240819-cp38-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.5.0.post20240819-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 317782144551c94dbae73610485d570e9bb6c4e5291ea78544484e5d50cd6bef
MD5 9fa4c341fcdafe52f83d144f98e40c3a
BLAKE2b-256 0edf9912fab1644993ce462e3899d4f68714934aa91f5e5578219a57b1290d96

See more details on using hashes here.

File details

Details for the file polars_nightly-1.5.0.post20240819-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.5.0.post20240819-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 25e53dc2f314a0c5350b1fa04048d0ec0b7e42caa044bb647306fc9d6528ad8f
MD5 202e982ff17c37aa7956a96a8fe8cfd7
BLAKE2b-256 eb30c5d6f02b9ba0b2bd45c545c65e21e5f4c669fbffc5295027ad19a01d0b1f

See more details on using hashes here.

File details

Details for the file polars_nightly-1.5.0.post20240819-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.5.0.post20240819-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e6b35fa1754d8479f4d8a304c4ba400440978a8e3f7f34262048693eef17a33
MD5 fd17abe301f42ee06031d465ea63833b
BLAKE2b-256 20a9d63ff8ac6bd26e7a6ecee73a693b806f3c7f31b3a8be8267662b120db49a

See more details on using hashes here.

File details

Details for the file polars_nightly-1.5.0.post20240819-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.5.0.post20240819-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 78d4c47f2394a208d051ed9ec1d142bc697d4cc2c5a71ea82afd3ced90b3b6d8
MD5 0d672fb23870ab31bc5f608fc7d4b6f9
BLAKE2b-256 19550227404249b59a08840952a6f010536c1a141cfa8dcfcfd00d05c2bde84a

See more details on using hashes here.

File details

Details for the file polars_nightly-1.5.0.post20240819-cp38-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.5.0.post20240819-cp38-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 14cd90d0a97a8e9971d61417bb4453109022e34f49ec9a3c1d76150ed4dc18f7
MD5 cb55e479e13a29a4e5c9d007acfe2010
BLAKE2b-256 dc6fe55be9bc0db940c5e8ea3706a7b7fbccd8caab93b742ebb4ff5d9f1ee125

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page