Skip to main content

Blazingly fast DataFrame library

Project description

Polars logo

Documentation: Python - Rust - Node.js - R | StackOverflow: Python - Rust - Node.js - R | User guide | Discord

Polars: Blazingly fast DataFrames in Rust, Python, Node.js, R, and SQL

Polars is a DataFrame interface on top of an OLAP Query Engine implemented in Rust using Apache Arrow Columnar Format as the memory model.

  • Lazy | eager execution
  • Multi-threaded
  • SIMD
  • Query optimization
  • Powerful expression API
  • Hybrid Streaming (larger-than-RAM datasets)
  • Rust | Python | NodeJS | R | ...

To learn more, read the user guide.

Python

>>> import polars as pl
>>> df = pl.DataFrame(
...     {
...         "A": [1, 2, 3, 4, 5],
...         "fruits": ["banana", "banana", "apple", "apple", "banana"],
...         "B": [5, 4, 3, 2, 1],
...         "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
...     }
... )

# embarrassingly parallel execution & very expressive query language
>>> df.sort("fruits").select(
...     "fruits",
...     "cars",
...     pl.lit("fruits").alias("literal_string_fruits"),
...     pl.col("B").filter(pl.col("cars") == "beetle").sum(),
...     pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"),
...     pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"),
...     pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"),
...     pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"),
... )
shape: (5, 8)
┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐
 fruits    cars      literal_stri  B    sum_A_by_ca  sum_A_by_fr  rev_A_by_fr  sort_A_by_B 
 ---       ---       ng_fruits     ---  rs           uits         uits         _by_fruits  
 str       str       ---           i64  ---          ---          ---          ---         
                     str                i64          i64          i64          i64         
╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡
 "apple"   "beetle"  "fruits"      11   4            7            4            4           
 "apple"   "beetle"  "fruits"      11   4            7            3            3           
 "banana"  "beetle"  "fruits"      11   4            8            5            5           
 "banana"  "audi"    "fruits"      11   2            8            2            2           
 "banana"  "beetle"  "fruits"      11   4            8            1            1           
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘

SQL

>>> df = pl.scan_csv("docs/data/iris.csv")
>>> ## OPTION 1
>>> # run SQL queries on frame-level
>>> df.sql("""
...	SELECT species,
...	  AVG(sepal_length) AS avg_sepal_length
...	FROM self
...	GROUP BY species
...	""").collect()
shape: (3, 2)
┌────────────┬──────────────────┐
 species     avg_sepal_length 
 ---         ---              
 str         f64              
╞════════════╪══════════════════╡
 Virginica   6.588            
 Versicolor  5.936            
 Setosa      5.006            
└────────────┴──────────────────┘
>>> ## OPTION 2
>>> # use pl.sql() to operate on the global context
>>> df2 = pl.LazyFrame({
...    "species": ["Setosa", "Versicolor", "Virginica"],
...    "blooming_season": ["Spring", "Summer", "Fall"]
...})
>>> pl.sql("""
... SELECT df.species,
...     AVG(df.sepal_length) AS avg_sepal_length,
...     df2.blooming_season
... FROM df
... LEFT JOIN df2 ON df.species = df2.species
... GROUP BY df.species, df2.blooming_season
... """).collect()

SQL commands can also be run directly from your terminal using the Polars CLI:

# run an inline SQL query
> polars -c "SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/data/iris.csv') GROUP BY species;"

# run interactively
> polars
Polars CLI v0.3.0
Type .help for help.

> SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/data/iris.csv') GROUP BY species;

Refer to the Polars CLI repository for more information.

Performance 🚀🚀

Blazingly fast

Polars is very fast. In fact, it is one of the best performing solutions available. See the PDS-H benchmarks results.

Lightweight

Polars is also very lightweight. It comes with zero required dependencies, and this shows in the import times:

  • polars: 70ms
  • numpy: 104ms
  • pandas: 520ms

Handles larger-than-RAM data

If you have data that does not fit into memory, Polars' query engine is able to process your query (or parts of your query) in a streaming fashion. This drastically reduces memory requirements, so you might be able to process your 250GB dataset on your laptop. Collect with collect(streaming=True) to run the query streaming. (This might be a little slower, but it is still very fast!)

Setup

Python

Install the latest Polars version with:

pip install polars

We also have a conda package (conda install -c conda-forge polars), however pip is the preferred way to install Polars.

Install Polars with all optional dependencies.

pip install 'polars[all]'

You can also install a subset of all optional dependencies.

pip install 'polars[numpy,pandas,pyarrow]'

See the User Guide for more details on optional dependencies

To see the current Polars version and a full list of its optional dependencies, run:

pl.show_versions()

Releases happen quite often (weekly / every few days) at the moment, so updating Polars regularly to get the latest bugfixes / features might not be a bad idea.

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

polars = { git = "https://github.com/pola-rs/polars", rev = "<optional git tag>" }

Requires Rust version >=1.80.

Contributing

Want to contribute? Read our contributing guide.

Python: compile Polars from source

If you want a bleeding edge release or maximal performance you should compile Polars from source.

This can be done by going through the following steps in sequence:

  1. Install the latest Rust compiler

  2. Install maturin: pip install maturin

  3. cd py-polars and choose one of the following:

    • make build-release, fastest binary, very long compile times
    • make build-opt, fast binary with debug symbols, long compile times
    • make build-debug-opt, medium-speed binary with debug assertions and symbols, medium compile times
    • make build, slow binary with debug assertions and symbols, fast compile times

    Append -native (e.g. make build-release-native) to enable further optimizations specific to your CPU. This produces a non-portable binary/wheel however.

Note that the Rust crate implementing the Python bindings is called py-polars to distinguish from the wrapped Rust crate polars itself. However, both the Python package and the Python module are named polars, so you can pip install polars and import polars.

Using custom Rust functions in Python

Extending Polars with UDFs compiled in Rust is easy. We expose PyO3 extensions for DataFrame and Series data structures. See more in https://github.com/pola-rs/pyo3-polars.

Going big...

Do you expect more than 2^32 (~4.2 billion) rows? Compile Polars with the bigidx feature flag or, for Python users, install pip install polars-u64-idx.

Don't use this unless you hit the row boundary as the default build of Polars is faster and consumes less memory.

Legacy

Do you want Polars to run on an old CPU (e.g. dating from before 2011), or on an x86-64 build of Python on Apple Silicon under Rosetta? Install pip install polars-lts-cpu. This version of Polars is compiled without AVX target features.

Sponsors

JetBrains logo

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

polars_nightly-1.7.1.post20240917-cp38-abi3-win_amd64.whl (32.1 MB view details)

Uploaded CPython 3.8+ Windows x86-64

polars_nightly-1.7.1.post20240917-cp38-abi3-manylinux_2_24_aarch64.whl (29.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

polars_nightly-1.7.1.post20240917-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (32.2 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

polars_nightly-1.7.1.post20240917-cp38-abi3-macosx_11_0_arm64.whl (27.4 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

polars_nightly-1.7.1.post20240917-cp38-abi3-macosx_10_12_x86_64.whl (30.8 MB view details)

Uploaded CPython 3.8+ macOS 10.12+ x86-64

File details

Details for the file polars_nightly-1.7.1.post20240917-cp38-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.7.1.post20240917-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 2fdd0d59ebac328c49bc65f362c1e522314b0adf4f8b1a9ac6409273523cdf20
MD5 da8183d798db4556212f4a44cc070cb2
BLAKE2b-256 ab27ca9973a509f9dc87e7e792eae3820f043cd3e81c96f6ab8e7e846481830c

See more details on using hashes here.

File details

Details for the file polars_nightly-1.7.1.post20240917-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.7.1.post20240917-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 55b98a6eb09ac7562babf5ba8af8d562252e42b6f324dd2ca3aff80a817b349b
MD5 554ba4595638d7d2366b8f3a7a93f083
BLAKE2b-256 6656d761b2ab3e8e619849011dfe1cc1b1fa9a07a5205ac74b7e2f32124832ce

See more details on using hashes here.

File details

Details for the file polars_nightly-1.7.1.post20240917-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.7.1.post20240917-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40b761d6f9008b6e1c3cb2437195d0c002426550d9707cfaec271dad5af2fc64
MD5 52f3a3a9996ad7143e5a40b337ccf2b6
BLAKE2b-256 74f899ae9f7daf346cc4b1885678c0ec8a951c4aa3009147739ac0e92048a824

See more details on using hashes here.

File details

Details for the file polars_nightly-1.7.1.post20240917-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.7.1.post20240917-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7df50fc42ad4ce4c9bf646acbab95b18992ee17cfb0a4af75234e488e299a272
MD5 4842317329125843deb4eb07b15ea3ca
BLAKE2b-256 a57b3c5f570e7f7009b93a12a349025b9a4d44a25bfa63c26ffc6d9dc72b79ee

See more details on using hashes here.

File details

Details for the file polars_nightly-1.7.1.post20240917-cp38-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for polars_nightly-1.7.1.post20240917-cp38-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 6aaf96d83b47a58a3764cfb733c1387ea9e39e09f6023fd383894b095aaa450a
MD5 86fd405d5898344053c437e0a61399da
BLAKE2b-256 da535056e83a7e462b339f47616173ee48b5589f866b4caf63f90e2853e12424

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page