Skip to main content

Automatically upgrade Polars code to the latest version.

Project description

polars-upgrade

Automatically upgrade your Polars code so it's compatible with future versions.

Installation

Easy:

pip install -U polars-upgrade

Usage (command-line)

Run

polars-upgrade my_project --target-version=0.20.0

from the command line. Replace 0.20.0 and my_project with your Polars version, and the name of your directory.

NOTE: this tool will modify your code! You're advised to stage your files before running it.

Usage (pre-commit hook)

-   repo: https://github.com/MarcoGorelli/polars-upgrade
    rev: 0.2.0  # polars-upgrade version goes here
    hooks:
    -   id: polars-upgrade
        args: [--target-version=0.20.0]  # Polars version goes here

Supported rewrites

Version 0.18.12+

- pl.avg
+ pl.mean

Version 0.19.0+

- df.groupby_dynamic
+ df.group_by_dynamic
- df.groupby_rolling
+ df.rolling
- df.rolling('ts', period='3d').apply
+ df.rolling('ts', period='3d').map_groups
- pl.col('a').rolling_apply
+ pl.col('a').rolling_map
- pl.col('a').apply
+ pl.col('a').map_elements
- pl.col('a').map
+ pl.col('a').map_batches
- pl.map
+ pl.map_batches
- pl.apply
+ pl.map_groups
- pl.col('a').any(drop_nulls=True)
+ pl.col('a').any(ignore_nulls=True)
- pl.col('a').all(drop_nulls=True)
+ pl.col('a').all(ignore_nulls=True)
- pl.col('a').value_counts(multithreaded=True)
+ pl.col('a').value_counts(parallel=True)

Version 0.19.2+

- pl.col('a').is_not
+ pl.col('a').not_

Version 0.19.3+

- pl.enable_string_cache(True)
+ pl.enable_string_cache()
- pl.enable_string_cache(False)
+ pl.disable_string_cache()
- pl.col('a').list.count_match
+ pl.col('a').list.count_matches
- pl.col('a').is_last
+ pl.col('a').is_last_distinct
- pl.col('a').is_first
+ pl.col('a').is_first_distinct
- pl.col('a').str.strip
+ pl.col('a').str.strip_chars
- pl.col('a').str.lstrip
+ pl.col('a').str.strip_chars_start
- pl.col('a').str.rstrip
+ pl.col('a').str.strip_chars_end
- pl.col('a').str.count_match
+ pl.col('a').str.count_matches
- pl.col("dt").dt.offset_by("1mo_saturating")
+ pl.col("dt").dt.offset_by("1mo")

Version 0.19.4+

- df.group_by_dynamic('ts', every='3d', truncate=True)
+ df.group_by_dynamic('ts', every='3d', label='left')
- df.group_by_dynamic('ts', every='3d', truncate=False)
+ df.group_by_dynamic('ts', every='3d', label='datapoint')

Version 0.19.8+

- pl.col('a').list.lengths
+ pl.col('a').list.len
- pl.col('a').str.lengths
+ pl.col('a').str.len_bytes
- pl.col('a').str.n_chars
+ pl.col('a').str.len_chars

Version 0.19.11+

- pl.col('a').shift(periods=4)
+ pl.col('a').shift(n=4)
- pl.col('a').shift_and_fill(periods=4)
+ pl.col('a').shift_and_fill(n=4)
- pl.col('a').list.shift(periods=4)
+ pl.col('a').list.shift(n=4)
- pl.col('a').map_dict(remapping={1: 2})
+ pl.col('a').map_dict(mapping={1: 2})

Version 0.19.12+

- pl.col('a').keep_name
+ pl.col('a').name.keep
- pl.col('a').suffix
+ pl.col('a').name.suffix
- pl.col('a').prefix
+ pl.col('a').name.prefix
- pl.col('a').map_alias
+ pl.col('a').name.map
- pl.col('a').str.ljust
+ pl.col('a').str.pad_end
- pl.col('a').str.rjust
+ pl.col('a').str.pad_start
- pl.col('a').zfill(alignment=3)
+ pl.col('a').zfill(length=3)
- pl.col('a').ljust(width=3)
+ pl.col('a').ljust(length=3)
- pl.col('a').rjust(width=3)
+ pl.col('a').rjust(length=3)

Version 0.19.13

- pl.col('a').dt.milliseconds
+ pl.col('a').dt.total_milliseconds
- pl.col('a').dt.microseconds
+ pl.col('a').dt.total_microseconds
- pl.col('a').dt.nanoseconds
+ pl.col('a').dt.total_nanoseconds

(and so on for other units)

Version 0.19.14

- pl.col('a').list.take
+ pl.col('a').list.gather
- pl.col('a').cumcount
+ pl.col('a').cum_count
- pl.col('a').cummax
+ pl.col('a').cum_max
- pl.col('a').cummin
+ pl.col('a').cum_min
- pl.col('a').cumprod
+ pl.col('a').cum_prod
- pl.col('a').cumsum
+ pl.col('a').cum_sum
- pl.col('a').cumcount
+ pl.col('a').cum_count
- pl.col('a').take
+ pl.col('a').gather
- pl.col('a').take_every
+ pl.col('a').gather_every
- pl.cumsum
+ pl.cum_sum
- pl.cumfold
+ pl.cum_fold
- pl.cumreduce
+ pl.cum_reduce
- pl.cumsum_horizontal
+ pl.cum_sum_horizontal
- pl.col('a').list.take(index=[1, 2])
+ pl.col('a').list.take(indices=[1, 2])
- pl.col('a').str.parse_int(radix=1)
+ pl.col('a').str.parse_int(base=1)

Version 0.19.15+

- pl.col('a').str.json_extract
+ pl.col('a').str.json_decode

Version 0.19.16

- pl.col('a').map_dict({'a': 'b'})
+ pl.col('a').replace({'a': 'b'}, default=None)
- pl.col('a').map_dict({'a': 'b'}, default='c')
+ pl.col('a').replace({'a': 'b'}, default='c')

Version 0.20.4

- pl.col('a').where
+ pl.col('a').filter

Notes

This work is derivative of pyupgrade - many parts have been lifted verbatim. As required, I've included pyupgrade's license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

polars_upgrade-0.2.0.tar.gz (19.1 kB view details)

Uploaded Source

Built Distribution

polars_upgrade-0.2.0-py3-none-any.whl (26.6 kB view details)

Uploaded Python 3

File details

Details for the file polars_upgrade-0.2.0.tar.gz.

File metadata

  • Download URL: polars_upgrade-0.2.0.tar.gz
  • Upload date:
  • Size: 19.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for polars_upgrade-0.2.0.tar.gz
Algorithm Hash digest
SHA256 6119553f0d73f1ebf4844a63b15d0fb238bb3867acb6d18250201fa0786d2c96
MD5 8f748a88c869d7e12e61f14760b935ec
BLAKE2b-256 8a5bfdfcd8b30ec429f0b8d46eaa82d732e22796217bad504e343de9676c1f67

See more details on using hashes here.

Provenance

File details

Details for the file polars_upgrade-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for polars_upgrade-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 19124cea1ea81bf94a005912b993ae470abefa0acbb913c1e6bcdcefe55e8195
MD5 99e4d1614d1e3788e3aaf9015cba77e4
BLAKE2b-256 1f174b19a80e152f5d0ab1148aa0f9e5e111bbf479582134b8f3320e50a0a674

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page