Skip to main content

Automatically upgrade Polars code to the latest version.

Project description

polars-upgrade

Automatically upgrade your Polars code so it's compatible with future versions.

Installation

Easy:

pip install -U polars-upgrade

Usage (command-line)

Run

polars-upgrade my_project --target-version=0.20.4

from the command line. Replace 0.20.4 and my_project with your Polars version, and the name of your directory.

NOTE: this tool will modify your code! You're advised to stage your files before running it.

Usage (pre-commit hook)

-   repo: https://github.com/MarcoGorelli/polars-upgrade
    rev: 0.3.0  # polars-upgrade version goes here
    hooks:
    -   id: polars-upgrade
        args: [--target-version=0.20.0]  # Polars version goes here

Usage (Jupyter Notebooks)

Install nbqa and then run

nbqa polars_upgrade my_project --target-version=0.20.4

Usage (library)

In a Python script:

from polars_upgrade import rewrite, Settings

src = """\
import polars as pl
df.select(pl.count())
"""
settings = Settings(target_version=(0, 20, 4))
output = rewrite(src, settings=settings)
print(output)

Output:

import polars as pl
df.select(pl.len())

If your snippet does not include import polars or import as pl, then you will also need to provide pl and/or polars to aliases, else polars-upgrade will not perform the rewrite. Example:

from polars_upgrade import rewrite, Settings

src = """\
df.select(pl.count())
"""
settings = Settings(target_version=(0, 20, 4))
output = rewrite(src, settings=settings, aliases={'pl'})
print(output)

Output:

df.select(pl.len())

Supported rewrites

Version 0.18.12+

- pl.avg
+ pl.mean

Version 0.19.0+

- df.groupby_dynamic
+ df.group_by_dynamic
- df.groupby_rolling
+ df.rolling
- df.rolling('ts', period='3d').apply
+ df.rolling('ts', period='3d').map_groups
- pl.col('a').rolling_apply
+ pl.col('a').rolling_map
- pl.col('a').apply
+ pl.col('a').map_elements
- pl.col('a').map
+ pl.col('a').map_batches
- pl.map
+ pl.map_batches
- pl.apply
+ pl.map_groups
- pl.col('a').any(drop_nulls=True)
+ pl.col('a').any(ignore_nulls=True)
- pl.col('a').all(drop_nulls=True)
+ pl.col('a').all(ignore_nulls=True)
- pl.col('a').value_counts(multithreaded=True)
+ pl.col('a').value_counts(parallel=True)

Version 0.19.2+

- pl.col('a').is_not
+ pl.col('a').not_

Version 0.19.3+

- pl.enable_string_cache(True)
+ pl.enable_string_cache()
- pl.enable_string_cache(False)
+ pl.disable_string_cache()
- pl.col('a').list.count_match
+ pl.col('a').list.count_matches
- pl.col('a').is_last
+ pl.col('a').is_last_distinct
- pl.col('a').is_first
+ pl.col('a').is_first_distinct
- pl.col('a').str.strip
+ pl.col('a').str.strip_chars
- pl.col('a').str.lstrip
+ pl.col('a').str.strip_chars_start
- pl.col('a').str.rstrip
+ pl.col('a').str.strip_chars_end
- pl.col('a').str.count_match
+ pl.col('a').str.count_matches
- pl.col("dt").dt.offset_by("1mo_saturating")
+ pl.col("dt").dt.offset_by("1mo")

Version 0.19.4+

- df.group_by_dynamic('ts', every='3d', truncate=True)
+ df.group_by_dynamic('ts', every='3d', label='left')
- df.group_by_dynamic('ts', every='3d', truncate=False)
+ df.group_by_dynamic('ts', every='3d', label='datapoint')

Version 0.19.8+

- pl.col('a').list.lengths
+ pl.col('a').list.len
- pl.col('a').str.lengths
+ pl.col('a').str.len_bytes
- pl.col('a').str.n_chars
+ pl.col('a').str.len_chars

Version 0.19.11+

- pl.col('a').shift(periods=4)
+ pl.col('a').shift(n=4)
- pl.col('a').shift_and_fill(periods=4)
+ pl.col('a').shift_and_fill(n=4)
- pl.col('a').list.shift(periods=4)
+ pl.col('a').list.shift(n=4)
- pl.col('a').map_dict(remapping={1: 2})
+ pl.col('a').map_dict(mapping={1: 2})

Version 0.19.12+

- pl.col('a').keep_name
+ pl.col('a').name.keep
- pl.col('a').suffix
+ pl.col('a').name.suffix
- pl.col('a').prefix
+ pl.col('a').name.prefix
- pl.col('a').map_alias
+ pl.col('a').name.map
- pl.col('a').str.ljust
+ pl.col('a').str.pad_end
- pl.col('a').str.rjust
+ pl.col('a').str.pad_start
- pl.col('a').zfill(alignment=3)
+ pl.col('a').zfill(length=3)
- pl.col('a').ljust(width=3)
+ pl.col('a').ljust(length=3)
- pl.col('a').rjust(width=3)
+ pl.col('a').rjust(length=3)

Version 0.19.13

- pl.col('a').dt.milliseconds
+ pl.col('a').dt.total_milliseconds
- pl.col('a').dt.microseconds
+ pl.col('a').dt.total_microseconds
- pl.col('a').dt.nanoseconds
+ pl.col('a').dt.total_nanoseconds

(and so on for other units)

Version 0.19.14

- pl.col('a').list.take
+ pl.col('a').list.gather
- pl.col('a').cumcount
+ pl.col('a').cum_count
- pl.col('a').cummax
+ pl.col('a').cum_max
- pl.col('a').cummin
+ pl.col('a').cum_min
- pl.col('a').cumprod
+ pl.col('a').cum_prod
- pl.col('a').cumsum
+ pl.col('a').cum_sum
- pl.col('a').cumcount
+ pl.col('a').cum_count
- pl.col('a').take
+ pl.col('a').gather
- pl.col('a').take_every
+ pl.col('a').gather_every
- pl.cumsum
+ pl.cum_sum
- pl.cumfold
+ pl.cum_fold
- pl.cumreduce
+ pl.cum_reduce
- pl.cumsum_horizontal
+ pl.cum_sum_horizontal
- pl.col('a').list.take(index=[1, 2])
+ pl.col('a').list.take(indices=[1, 2])
- pl.col('a').str.parse_int(radix=1)
+ pl.col('a').str.parse_int(base=1)

Version 0.19.15+

- pl.col('a').str.json_extract
+ pl.col('a').str.json_decode

Version 0.19.16

- pl.col('a').map_dict({'a': 'b'})
+ pl.col('a').replace({'a': 'b'}, default=None)
- pl.col('a').map_dict({'a': 'b'}, default='c')
+ pl.col('a').replace({'a': 'b'}, default='c')

Version 0.20.0

- df.write_database(table_name='foo', if_exists="append")
+ df.write_database(table_name='foo', if_table_exists="append")

Version 0.20.4

- pl.col('a').where
+ pl.col('a').filter
- pl.count()
+ pl.len()
- df.with_row_count('row_number')
+ df.with_row_index('row_number')
- pl.scan_ndjson(source, row_count_name='foo', row_count_offset=3)
+ pl.scan_ndjson(source, row_index_name='foo', row_index_offset=3)
[...and similarly for `read_csv`, `read_csv_batched`, `scan_csv`, `read_ipc`, `read_ipc_stream`, `scan_ipc`, `read_parquet`, `scan_parquet`]

Version 0.20.5

- df.pivot(index=index, values=values, columns=columns, aggregate_function='count')
+ df.pivot(index=index, values=values, columns=columns, aggregate_function='len')

Version 0.20.6

- pl.read_excel(source, xlsx2csv_options=options, read_csv_options=read_options)
+ pl.read_excel(source, engine_options=options, read_options=read_options)

Version 0.20.7

- pl.threadpool_size
+ pl.thread_pool_size

Version 0.20.11

- pl.col('a').meta.write_json
+ pl.col('a').meta.serialize
- lf.approx_n_unique()
+ lf.select(pl.all().approx_n_unique())

Notes

This work is derivative of pyupgrade - many parts have been lifted verbatim. As required, I've included pyupgrade's license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

polars_upgrade-0.3.0.tar.gz (22.4 kB view details)

Uploaded Source

Built Distribution

polars_upgrade-0.3.0-py3-none-any.whl (34.9 kB view details)

Uploaded Python 3

File details

Details for the file polars_upgrade-0.3.0.tar.gz.

File metadata

  • Download URL: polars_upgrade-0.3.0.tar.gz
  • Upload date:
  • Size: 22.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for polars_upgrade-0.3.0.tar.gz
Algorithm Hash digest
SHA256 d53c5a01813314ab3b171f1e5b9281a3203815f2e333466327efe393c70a3082
MD5 f1b3c21987e09d735f44ea0e31f23a15
BLAKE2b-256 c589613bf53ffe212bb6cf1c01d5335f4ce6e472d5e472cb25ed65c9c2476ca9

See more details on using hashes here.

Provenance

File details

Details for the file polars_upgrade-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for polars_upgrade-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 68ad827ce63c79314c395e8eb8c4e60ac680c732be4d584a0676c590ca41769e
MD5 f411ce80703b6cc5d64de4ac2a2b2936
BLAKE2b-256 0b7e9ce4e5d1139a3cf007ea5090c0b7b39e3a855faad23632602b367a35e901

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page