Skip to main content

Python package for Orbital Mechanics

Project description

poliastro logo
Name:

poliastro

Website:

https://poliastro.github.io/

Author:

Juan Luis Cano Rodríguez orcid

Version:

0.13.0

circleci appveyor codecov codeclimate

docs license doi astropy mailing Join the chat at https://chat.openastronomy.org/#/room/#poliastro:matrix.org

poliastro is an open source pure Python package dedicated to problems arising in Astrodynamics and Orbital Mechanics, such as orbit propagation, solution of the Lambert’s problem, conversion between position and velocity vectors and classical orbital elements and orbit plotting, focusing on interplanetary applications. It is released under the MIT license.

from poliastro.examples import molniya

molniya.plot()
https://github.com/poliastro/poliastro/raw/0.13.x/docs/source/examples/molniya.png

Documentation

docs

Complete documentation, including a user guide and an API reference, can be read on the wonderful Read the Docs.

https://docs.poliastro.space/

Examples

mybinder

In the examples directory you can find several Jupyter notebooks with specific applications of poliastro. You can launch a cloud Jupyter server using binder to edit the notebooks without installing anything. Try it out!

https://beta.mybinder.org/v2/gh/poliastro/poliastro/0.13.x?filepath=index.ipynb

Requirements

poliastro requires the following Python packages:

  • NumPy, for basic numerical routines

  • Astropy, for physical units and time handling

  • numba (optional), for accelerating the code

  • jplephem, for the planetary ephemerides using SPICE kernels

  • matplotlib, for orbit plotting

  • plotly, for 2D and 3D interactive orbit plotting

  • SciPy, for root finding and numerical propagation

poliastro is usually tested on Linux and Windows on Python 3.6 and 3.7 against latest NumPy. It should work on OS X without problems.

Platform

Site

Status

Linux

CircleCI

circleci

Windows x64

Appveyor

appveyor

Installation

The easiest and fastest way to get the package up and running is to install poliastro using conda:

$ conda install poliastro --channel conda-forge

Please check out the documentation for alternative installation methods.

Testing

codecov

If installed correctly, the tests can be run using pytest:

$ python -c "import poliastro.testing; poliastro.testing.test()"
===================================== test session starts =====================================
platform linux -- Python 3.7.1, pytest-4.2.0, py-1.7.0, pluggy-0.8.1
rootdir: /home/juanlu/.miniconda36/envs/_test37/lib/python3.7/site-packages/poliastro, inifile:
collected 747 items
[...]
========= 738 passed, 3 skipped, 5 xfailed, 1 xpassed, 13 warnings in 392.12 seconds ==========
$

Problems

If the installation fails or you find something that doesn’t work as expected, please open an issue in the issue tracker.

Contributing

'Stories in Ready'

poliastro is a community project, hence all contributions are more than welcome! For more information, head to CONTRIBUTING.rst.

Support

mailing Join the chat at https://chat.openastronomy.org/#/room/#poliastro:matrix.org

Release announcements and general discussion take place on our Mailing List .

For further clarifications and discussions, feel free to join Poliastro Chat Room.

Citing

If you use poliastro on your project, please drop me a line.

You can also use the DOI to cite it in your publications. This is the latest one:

doi

And this is an example citation format:

Juan Luis Cano Rodríguez et al.. (2015). poliastro: poliastro 0.4.0. Zenodo. 10.5281/zenodo.17462

License

license

poliastro is released under the MIT license, hence allowing commercial use of the library. Please refer to the COPYING file.

FAQ

What’s up with the name?

poliastro comes from Polimi, which is the shortened name of the Politecnico di Milano, the Italian university where I was studying while writing this software. It’s my tiny tribute to a place I came to love. Grazie mille!

Can I do <insert awesome thing> with poliastro?

poliastro is focused on interplanetary applications. This has two consequences:

  • It tries to be more general than other Flight Dynamics core libraries more focused on Earth satellites (see Related software for a brief list), allowing the algorithms to work also for orbits around non-Earth bodies.

  • It leaves out certain features that would be too Earth-specific, such as TLE reading, SGP4 propagation, groundtrack plotting and others.

What’s the future of the project?

poliastro is actively maintained and receiving an influx of new contributors thanks to the generous sponsorship of Google and the European Space Agency. The best way to get an idea of the roadmap is to see the Milestones of the project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

poliastro-0.13.0.tar.gz (116.6 kB view details)

Uploaded Source

Built Distribution

poliastro-0.13.0-py3-none-any.whl (142.6 kB view details)

Uploaded Python 3

File details

Details for the file poliastro-0.13.0.tar.gz.

File metadata

  • Download URL: poliastro-0.13.0.tar.gz
  • Upload date:
  • Size: 116.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3

File hashes

Hashes for poliastro-0.13.0.tar.gz
Algorithm Hash digest
SHA256 ac70c197520a02fa9a414a7ca1b07693206aa9317b50547b8493012c4ccbb1be
MD5 db19b3509d1f288caef8b9dd5bd02e23
BLAKE2b-256 e5c4294dd3da7f79566b9e70238a7bb51a2a9b8e8dc74720aad07cbd0bf1da91

See more details on using hashes here.

File details

Details for the file poliastro-0.13.0-py3-none-any.whl.

File metadata

  • Download URL: poliastro-0.13.0-py3-none-any.whl
  • Upload date:
  • Size: 142.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3

File hashes

Hashes for poliastro-0.13.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8fc0b134333371dce9ddc2198c605771ba7cbbf74692e68e8f901f68d36185f0
MD5 871d55fedf9ce73b6bcde2403334f315
BLAKE2b-256 0ab4a29ed05251eb54fd8c63b1a6a73f8a7f99032e6e530092860c5b258fe2bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page