Skip to main content

Utilities and Python wrappers for Orbital Mechanics

Project description

poliastro logo

Name: poliastro
Website: https://www.poliastro.space/
Author: Juan Luis Cano Rodríguez orcid
Version: 0.15b1

azure_pipelines codecov codeclimate

docs license doi astropy mailing Join the chat at http://chat.poliastro.space/

OpenCollective OpenCollective

poliastro is an open source (MIT) pure Python library for interactive Astrodynamics and Orbital Mechanics, with a focus on ease of use, speed, and quick visualization. It provides a simple and intuitive API, and handles physical quantities with units.

Some features include orbit propagation, solution of the Lambert's problem, conversion between position and velocity vectors and classical orbital elements and orbit plotting, among others. It focuses on interplanetary applications, but can also be used to analyze artificial satellites in Low-Earth Orbit (LEO).

from poliastro.examples import molniya

molniya.plot()

Documentation

docs

Complete documentation, including a user guide and an API reference, can be read on the wonderful Read the Docs.

https://docs.poliastro.space/

Examples

mybinder

In the examples directory you can find several Jupyter notebooks with specific applications of poliastro. You can launch a cloud Jupyter server using binder to edit the notebooks without installing anything. Try it out!

https://beta.mybinder.org/v2/gh/poliastro/poliastro/0.15.x?filepath=index.ipynb

Requirements

poliastro requires the following Python packages:

  • NumPy, for basic numerical routines
  • Astropy, for physical units and time handling
  • numba, for accelerating the code
  • jplephem, for the planetary ephemerides using SPICE kernels
  • matplotlib, for orbit plotting
  • plotly, for 2D and 3D interactive orbit plotting
  • SciPy, for root finding and numerical propagation

poliastro is tested on Linux, OS X and Windows on Python 3.7 and 3.8 against latest NumPy.

azure_pipelines

Installation

The easiest and fastest way to get the package up and running is to install poliastro using conda:

    $ conda install poliastro --channel conda-forge

Please check out the documentation for alternative installation methods.

Problems and suggestions

If for any reason you get an unexpected error message or an incorrect result, or you want to let the developers know about your use case, please open a new issue in the issue tracker and we will try to answer promptly.

Contributing

poliastro is a community project, hence all contributions are more than welcome! For more information, head to CONTRIBUTING.md.

Support

mailing Join the chat at http://chat.poliastro.space/

Release announcements and general discussion take place on our Mailing List .

For further clarifications and discussions, feel free to join Poliastro Chat Room.

Citing

If you use poliastro on your project, please drop me a line.

You can also use the DOI to cite it in your publications. This is the latest one:

doi

And this is an example citation format:

Juan Luis Cano Rodríguez et al.. (2015). poliastro: poliastro 0.4.0. Zenodo. 10.5281/zenodo.17462

License

license

poliastro is released under the MIT license, hence allowing commercial use of the library. Please refer to the COPYING file.

Credits

Contributors

This project exists thanks to all the people who contribute!

Contributors

Backers

Thank you to all our backers! Become a backer.

Backers

Sponsors

Support us by becoming a sponsor. Your logo will show up here with a link to your website. Become a sponsor.

Sponsors

FAQ

What's up with the name?

poliastro comes from Polimi, which is the shortened name of the Politecnico di Milano, the Italian university where I was studying while writing this software. It's my tiny tribute to a place I came to love. Grazie mille!

Can I do <insert awesome thing> with poliastro?

poliastro has been historically focused on interplanetary applications, but we have been adding more features for artificial satellites in LEO. Therefore, you might find that some features are currently lacking, in particular propagation of General Perturbations orbital data such as TLE/3LE, OMM, and the like.

Besides, poliastro is a community project that strives to be easy to use, while at the same time producing correct results that are validated against other commonly used Astrodynamics software such as GMAT and Orekit. Therefore, you might find that its API is very different from these projects, and also that some advanced features are missing (such as detailed spherical harmonics modeling of the Earth beyond J2 and J3). We encourage you to open an issue so we can discuss future feature additions!

What's the future of the project?

poliastro is actively maintained and receiving an influx of new contributors thanks to the generous sponsorship of Google and the European Space Agency. The best way to get an idea of the roadmap is to see the Milestones of the project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

poliastro-0.15b1.tar.gz (101.1 kB view details)

Uploaded Source

Built Distribution

poliastro-0.15b1-py3-none-any.whl (132.7 kB view details)

Uploaded Python 3

File details

Details for the file poliastro-0.15b1.tar.gz.

File metadata

  • Download URL: poliastro-0.15b1.tar.gz
  • Upload date:
  • Size: 101.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for poliastro-0.15b1.tar.gz
Algorithm Hash digest
SHA256 44171041670f67d09d2e790ac006a39f235b177fb73540259f9d47413814bfba
MD5 42f7cdce65ea6226f5d566bb04014702
BLAKE2b-256 f66c411a0432b54cab882e385d3d9805b3c1332d21cf774a996133a5ff354d45

See more details on using hashes here.

File details

Details for the file poliastro-0.15b1-py3-none-any.whl.

File metadata

  • Download URL: poliastro-0.15b1-py3-none-any.whl
  • Upload date:
  • Size: 132.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for poliastro-0.15b1-py3-none-any.whl
Algorithm Hash digest
SHA256 d252b214f2209938432a9afe363dd4080143c921fd81edd8be0ba37aa2bfc715
MD5 bc4ddf6e4f344aa6c7f6b88bdc5175fb
BLAKE2b-256 0b7b3aeff07150a28438c3ad35c6c08a3e30a908aedc3616d8306dfa2cfeba46

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page