Skip to main content

Create arbitrary boxes with isotropic power spectra

Project description

https://coveralls.io/repos/github/steven-murray/powerbox/badge.svg?branch=master https://img.shields.io/pypi/v/powerbox.svg https://travis-ci.org/steven-murray/powerbox.svg?branch=master

Make arbitrarily structured, arbitrary-dimension boxes.

powerbox is a pure-python code for creating density grids (or boxes) that have an arbitrary two-point distribution (i.e. power spectrum). Primary motivations for creating the code were the simple creation of lognormal mock galaxy distributions, but the methodology can be used for other applications.

Features

  • Works in any number of dimensions.

  • Really simple.

  • Arbitrary isotropic power-spectra.

  • Create Gaussian or Log-Normal fields

  • Create discrete samples following the field, assuming it describes an over-density.

Installation

Clone/Download then python setup.py install. Or just pip install powerbox.

Basic Usage

There are two useful classes: the basic PowerBox and one for log-normal fields: LogNormalPowerBox. You can import them like

from powerbox import PowerBox, LogNormalPowerBox

Once imported, to see all the options, just use help:

help(PowerBox)

For a basic 2D Gaussian field with a power-law power-spectrum, one can use the following:

pb = PowerBox(N=512,                     # Number of grid-points in the box
              dim=2,                     # 2D box
              pk = lambda k: 0.1*k**-2., # The power-spectrum
              boxlength = 1.0)           # Size of the box (sets the units of k in pk)
import matplotlib.pyplot as plt
plt.imshow(pb.delta_x)

Other attributes of the box can be accessed also – check them out with tab completion in an interpreter! The LogNormalPowerBox class is called in exactly the same way, but the resulting field has a log-normal pdf with the same power spectrum.

TODO

  • At this point, log-normal transforms are done by back-and-forward FFTs on the grid, which could be slow for higher dimensions. Soon I will implement a more efficient way of doing this using numerical Hankel transforms.

  • Some more tests might be nice.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

powerbox-0.2.3.tar.gz (6.5 kB view details)

Uploaded Source

Built Distribution

powerbox-0.2.3-py2-none-any.whl (8.6 kB view details)

Uploaded Python 2

File details

Details for the file powerbox-0.2.3.tar.gz.

File metadata

  • Download URL: powerbox-0.2.3.tar.gz
  • Upload date:
  • Size: 6.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for powerbox-0.2.3.tar.gz
Algorithm Hash digest
SHA256 16df83dcf846cf083b56234cf3ce782c8afe4f7cb4bf7474c1bca975edd3552f
MD5 f4a190cc399f4e3d30053796a56e07b0
BLAKE2b-256 930626bd797895b26b19145cbc5d8468161e624ae5b8219463a0d63ee711683f

See more details on using hashes here.

File details

Details for the file powerbox-0.2.3-py2-none-any.whl.

File metadata

File hashes

Hashes for powerbox-0.2.3-py2-none-any.whl
Algorithm Hash digest
SHA256 cae2b6d5ba35815837a06c901a9cdc82e336c1d802c43e5c1201b539216c119b
MD5 5d2f4f70b4dd8cb36772cb0ed84f348c
BLAKE2b-256 6823b98ed7b69cc2806ae79537e959456882aa9125309725dbd87a782954045f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page