Skip to main content

A Library to enable preconversion of any Python type into one that is easily serializable

Project description

Preconvert

PyPI version

A Library to enable preconversion of any Python type into one that is easily serializable.

Preconvert provides a way to define conversions from more complex objects and datastructures into the base types before serialization happens. This happens in a way that is independant of the eventual form of serialization, allowing you to easily then serialize into multiple formats.

Why?

Have you ever tried to json.dumps a data structure, only to be surprised when your DataClass throws an exception, or your namedtuple outputs as a list? Preconvert was created to solve this problem across common serialization formats.

Before Preconvert:

import sys
import json
from dataclasses import dataclass


@dataclass
class InventoryItem:
    """Class for keeping track of an item in inventory."""
    name: str
    unit_price: float
    quantity_on_hand: int = 0

    def total_cost(self) -> float:
        return self.unit_price * self.quantity_on_hand


my_store_inventory = [InventoryItem("beer", unit_price=0.0, quantity_on_hand=sys.maxsize),  InventoryItem("bacon", unit_price=2.5, quantity_on_hand=3)]
json.dumps(my_store_inventory)

output >>>

    177
    178
--> 179         raise TypeError(f'Object of type {o.__class__.__name__} '
    180                         f'is not JSON serializable')
    181

TypeError: Object of type InventoryItem is not JSON serializable

D:

After preconvert:

import sys
import json
from preconvert.output import json


@dataclass
class InventoryItem:
    """Class for keeping track of an item in inventory."""
    name: str
    unit_price: float
    quantity_on_hand: int = 0

    def total_cost(self) -> float:
        return self.unit_price * self.quantity_on_hand


my_store_inventory = [InventoryItem("beer", unit_price=0.0, quantity_on_hand=sys.maxsize),  InventoryItem("bacon", unit_price=2.5, quantity_on_hand=3)]
json.dumps(my_store_inventory)

output >>>

'[{"name": "beer", "unit_price": 0.0, "quantity_on_hand": 9223372036854775807}, {"name": "bacon", "unit_price": 2.5, "quantity_on_hand": 3}]'

:D

Design goals:

  • Enable conversion from complex to simple types independant of desired output format
  • Provide built in conversion for common types that are not universally supported (dataclasses, namedtuple, etc...)
  • Provide a way to build custom preconverts or override built-in preconverts
  • Ability to build preconverts that are dependent on the destination format
  • Easy utilization from existing projects
  • Minimal overhead when utilized with common serialization formats

How do I use this?

  1. Download

pip3 install preconvert

  1. Utilize

If your project uses one of our built-in supported serializers (json, msgpak, bson) you can simply replace your existing serializer import with a preconvert one:

from preconvert.outputs import json

OR

from preconvert.outputs import simplejson as json

OR

from preconvert.outputs import msgpack

OR

from preconvert.outputs import bson

If not you can inject preconvert before usage of any other serializers, often by setting a default or on_onknown parameter:

import preconvert
import my_serializer

my_serializer.dumps(default=preconvert.unserializable)

How do I extend this?

Want to add preconversion to your own custom types? For OOP projects, one easy way to do this is to add a __native_types__ method to your object:

class MyCustomClass(object):
    def __init__(self, first_name, children=()):
        self.first_name = first_name
        self.children = children

    def __native_types__(self)
        return {'first': self.first_name, 'children': children}

For other entities, such as objects you do not control, you can register a new preconvert using the preconvert.converter decorator:

import preconvert


@preconvert.converter(SomeFrameworkObject)
def convert_framework_object(instance):
    return {'name': instance.name}

You can also, optionally, specify preconversions per an intended serialization format:

import preconvert


@preconvert.json(SomeFrameworkObject)
def convert_framework_object(instance):
    return {'json': {'name': instance.name}}


@preconvert.msgpack(SomeFrameworkObject)
def convert_framework_object(instance):
    return ['name', instance.name]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

preconvert-0.0.2.tar.gz (14.0 kB view hashes)

Uploaded Source

Built Distribution

preconvert-0.0.2-py3-none-any.whl (15.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page