Skip to main content

Parse romanized names & companies using advanced NLP methods

Project description

probablepeople is a python library for parsing unstructured romanized name or company strings into components, using conditional random fields.

>From the python interpreter:

>>> import probablepeople
>>> probablepeople.parse('Mr George "Gob" Bluth II')
[('Mr', 'PrefixMarital'),
 ('George', 'GivenName'),
 ('"Gob"', 'Nickname'),
 ('Bluth', 'Surname'),
 ('II', 'SuffixGenerational')]
>>> probablepeople.parse('Sitwell Housing Inc')
[('Sitwell', 'CorporationName'),
 ('Housing', 'CorporationName'),
 ('Inc', 'CorporationLegalType')]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

probablepeople-0.5.4.tar.gz (882.9 kB view details)

Uploaded Source

Built Distribution

probablepeople-0.5.4-py2.py3-none-any.whl (888.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file probablepeople-0.5.4.tar.gz.

File metadata

File hashes

Hashes for probablepeople-0.5.4.tar.gz
Algorithm Hash digest
SHA256 3ba4e98fba44b123fc5533c93d634cf76b16462e51d2abbec0761e9451bd2144
MD5 35c659ed6fb73bd36d82c1da66ddd6a3
BLAKE2b-256 344ae206562f5f245c004ad35e00242f292eb5f7792b151829beb2ae55f2d5c7

See more details on using hashes here.

File details

Details for the file probablepeople-0.5.4-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for probablepeople-0.5.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 9ee0806a2931536b4c72fb98416529f81c066db23f556ea5281e20d34dd6cbac
MD5 93d840a3382c15f8337c0e28c2024a75
BLAKE2b-256 3e526463a5348bc5b395bb30a18aed26bd43c9dbf428c188b839c54567d35bcd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page