LLM-targeted template engine, built upon Jinja
Project description
Prompt Bottle
LLM-targeted template engine, built upon Jinja.
Features
- Use Jinja syntax to build template for OpenAI chat completion API.
- Multimodal support for input - without pain.
- Simple and easy to use.
Quick Start
Install the package via pip:
pip install prompt_bottle
Then, we can create a "Prompt Bottle" using Jinja syntax:
from prompt_bottle import PromptBottle
bottle = PromptBottle(
[
{
"role": "system",
"content": "You are a helpful assistant in the domain of {{ domain }}",
},
"{% for round in rounds %}",
{
"role": "user",
"content": "Question: {{ round[0] }}",
},
{
"role": "assistant",
"content": "Answer: {{ round[1] }}",
},
"{% endfor %}",
{"role": "user", "content": "Question: {{ final_question }}"},
]
)
Then we can render it as we do with Jinja.
Render the bottle and send to OpenAI:
from prompt_bottle import pb_img_url
prompt = bottle.render(
domain="math",
rounds=[
("1+1", "2"),
(
f"What is this picture? {pb_img_url('https://upload.wikimedia.org/wikipedia/en/a/a9/Example.jpg')}",
"This is an example image by Wikipedia",
),
],
final_question="8*8",
)
from rich import print # pip install rich
print(prompt)
It prints the rendered prompt:
[
{
'content': [{'text': 'You are a helpful assistant in the domain of math', 'type': 'text'}],
'role': 'system'
},
{'content': [{'text': 'Question: 1+1', 'type': 'text'}], 'role': 'user'},
{'role': 'assistant', 'content': [{'text': 'Answer: 2', 'type': 'text'}]},
{
'content': [
{'text': 'Question: What is this picture? ', 'type': 'text'},
{
'image_url': {'url': 'https://upload.wikimedia.org/wikipedia/en/a/a9/Example.jpg'},
'type': 'image_url'
}
],
'role': 'user'
},
{
'role': 'assistant',
'content': [{'text': 'Answer: This is an example image by Wikipedia', 'type': 'text'}]
},
{'content': [{'text': 'Question: 8*8', 'type': 'text'}], 'role': 'user'}
]
Finally, we can send the prompt to OpenAI:
from openai import OpenAI
client = OpenAI()
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=prompt,
)
print(response.choices[0].message.content)
The response is:
Answer: 64
Concepts
Prompt Bottle
The template of the prompt. It is a list of Template Messages. It can be rendered as python dict or JSON string.
Template Message
A message is either an OpenAI message dict, or a Jinja control block like {% for ... %}
or {% if ... %}
.
If it is a text message, it will be rendered by Jinja firstly, like {{ variable }}
. And then it will be rendered by Multimodal Tag
.
Multimodal Tag
The tag inside a text can render the text message as multimodal parts. The tag looks like <PROMPT_BOTTLE_IMG_URL>https://your.image.url</PROMPT_BOTTLE_IMG_URL>
, or using pb_img_url("https://your.image.url")
function to get it.
All the Multimodal Tags can be found in prompt_bottle.tags.tags.
Presets
Some common prompt templates are provided in prompt_bottle.presets.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file prompt_bottle-0.1.0.tar.gz
.
File metadata
- Download URL: prompt_bottle-0.1.0.tar.gz
- Upload date:
- Size: 5.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: pdm/2.20.1 CPython/3.10.12 Linux/6.5.0-1025-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 31a9796fd18cfc37d23731c140956753f78651561fb125c56ffec1e60c5e8b1f |
|
MD5 | 623ee076243e0429507a3912a9ff9f55 |
|
BLAKE2b-256 | 3ab850be1ea7994e08ed30e894ec8c73cfac2077677c0e4b662013a9f7b67720 |
File details
Details for the file prompt_bottle-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: prompt_bottle-0.1.0-py3-none-any.whl
- Upload date:
- Size: 6.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: pdm/2.20.1 CPython/3.10.12 Linux/6.5.0-1025-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a8b5b25d77deb27b4dc3ba28131772a8a3e49a9126a5684f40daf60bdc5e8a59 |
|
MD5 | 3c70f00022be476174fb5d0ab06eb8da |
|
BLAKE2b-256 | cfaeffe89806499dd61dbcbf80ffe5d4d6e88800e4eaa48501f984f46d2fc0fa |