Skip to main content

LLM-targeted template engine, built upon Jinja

Project description

Prompt Bottle

An LLM-targeted template engine, built upon Jinja.

Features

  • Use Jinja syntax to build template for LLM inputs list
  • Painless multimodal support for LLM inputs
  • Use OpenAI chat completion API

Quick Start

Install the package via pip:

pip install prompt_bottle

Then, we can create a "Prompt Bottle" using Jinja syntax:

from prompt_bottle import PromptBottle

bottle = PromptBottle(
    [
        {
            "role": "system",
            "content": "You are a helpful assistant in the domain of {{ domain }}",
        },
        "{% for round in rounds %}",
        {
            "role": "user",
            "content": "Question: {{ round[0] }}",
        },
        {
            "role": "assistant",
            "content": "Answer: {{ round[1] }}",
        },
        "{% endfor %}",
        {"role": "user", "content": "Question: {{ final_question }}"},
    ]
)

Then we can render it as we do with Jinja.

Render the bottle and send to OpenAI:
from prompt_bottle import pb_img_url

prompt = bottle.render(
    domain="math",
    rounds=[
        ("1+1", "2"),
        (
            f"What is this picture? {pb_img_url('https://upload.wikimedia.org/wikipedia/en/a/a9/Example.jpg')}",
            "This is an example image by Wikipedia",
        ),
    ],
    final_question="8*8",
)

from rich import print  # pip install rich

print(prompt)
It prints the rendered prompt:
[
    {
        'content': [{'text': 'You are a helpful assistant in the domain of math', 'type': 'text'}],
        'role': 'system'
    },
    {'content': [{'text': 'Question: 1+1', 'type': 'text'}], 'role': 'user'},
    {'role': 'assistant', 'content': [{'text': 'Answer: 2', 'type': 'text'}]},
    {
        'content': [
            {'text': 'Question: What is this picture? ', 'type': 'text'},
            {
                'image_url': {'url': 'https://upload.wikimedia.org/wikipedia/en/a/a9/Example.jpg'},
                'type': 'image_url'
            }
        ],
        'role': 'user'
    },
    {
        'role': 'assistant',
        'content': [{'text': 'Answer: This is an example image by Wikipedia', 'type': 'text'}]
    },
    {'content': [{'text': 'Question: 8*8', 'type': 'text'}], 'role': 'user'}
]

Finally, we can send the prompt to OpenAI:

from openai import OpenAI

client = OpenAI()

response = client.chat.completions.create(
    model="gpt-4o-mini",
    messages=prompt,
)

print(response.choices[0].message.content)

The response is:

Answer: 64

Concepts

Prompt Bottle

The template of the prompt. It is a list of Template Messages. It can be rendered as python dict or JSON string.

Template Message

A message is either an OpenAI message dict, or a Jinja control block like {% for ... %} or {% if ... %}.

If it is a text message, it will be rendered by Jinja firstly, like {{ variable }}. And then it will be rendered by Multimodal Tag.

Multimodal Tag

The tag inside a text can render the text message as multimodal parts. The tag looks like <PROMPT_BOTTLE_IMG_URL>https://your.image.url</PROMPT_BOTTLE_IMG_URL>, or using pb_img_url("https://your.image.url") function to get it.

All the Multimodal Tags can be found in prompt_bottle.tags.tags.

Presets

Some common prompt templates are provided in prompt_bottle.presets.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

prompt_bottle-0.1.1.tar.gz (6.8 kB view details)

Uploaded Source

Built Distribution

prompt_bottle-0.1.1-py3-none-any.whl (6.9 kB view details)

Uploaded Python 3

File details

Details for the file prompt_bottle-0.1.1.tar.gz.

File metadata

  • Download URL: prompt_bottle-0.1.1.tar.gz
  • Upload date:
  • Size: 6.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: pdm/2.20.1 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for prompt_bottle-0.1.1.tar.gz
Algorithm Hash digest
SHA256 1220d2669b6671dfa6509bad7779ef1347ae8107cf52e070002eafc7149a06f7
MD5 a776e6b2abc72ab8c5ea059a4a74f956
BLAKE2b-256 7f3b437aa29a695f7dac75c2347f9cc97afa0ab112f8a33932d6ecebaf830004

See more details on using hashes here.

File details

Details for the file prompt_bottle-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: prompt_bottle-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 6.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: pdm/2.20.1 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for prompt_bottle-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f70117365156abe87faf829e9e7dab83c2687a0e29e1776641c70c87a32552bc
MD5 c9f97eebd268ee42e1fc16b6d2122f77
BLAKE2b-256 36d986b0c05cca19a8bc8ff662c56eecdc7013da710173427506c61a902ef4ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page