Skip to main content

obtain pKas for titreatable residues from a simulation trajectory

Project description

README: propkatraj

DOI

propkatraj.py can be used to computationally estimate pKa values for protein residues. We use an ensemble approach where many different conformations are sampled with equilibrium molecular dynamics simulations. We then apply the fast heuristic pKa predictor PROPKA 3.1 to individual frames of the trajectory. By analysing the statistics of the pKa predictions a more consistent picture emerges than from a pKa prediction of a single static conformation.

Required software

See INSTALL.md for how to install everything.

Usage

The propkatraj.get_propka() function contains all functionality.

from propkatraj import get_propka

It takes a MDAnalysis.Universe instance as argument and runs PROPKA on each frame of the trajectory.

def get_propka(universe, sel='protein', start=None, stop=None, step=None):
    Get and store pKas for titrateable residues near the binding site.

    Parameters
    ----------
    universe : :class:`MDAnalysis.Universe`
        Universe to obtain pKas for.
    sel : str, array_like
        Selection string to use for selecting atoms to use from given
        ``universe``. Can also be a numpy array or list of atom indices to use.
    start : int
        Frame of trajectory to start from. `None` means start from beginning.
    stop : int
        Frame of trajectory to end at. `None` means end at trajectory end.
    step : int
        Step by which to iterate through trajectory frames. propka is slow,
        so set according to how finely you need resulting timeseries.

    Results
    -------
    pkas : :class:`pandas.DataFrame`
        DataFrame giving estimated pKa value for each residue for each
        trajectory frame. Residue numbers are given as column labels, times as
        row labels.

The function returns a pandas.DataFrame which contains the time as the first column and the residue numbers as subsequent columns. For each time step, the predicted pKa value for this residue is stored. Process the DataFrame to obtain statistics as shown in the Documentation.

Documentation

See the Jupyter notebook docs/propkatraj-example.ipynb for how to use propkatraj.get_propka on an example trajectory and how to plot the data with seaborn.

Citation

If you use propkatraj in published work please cite Reference 1 for PROPKA 3.1 and Reference 2 for the ensemble method itself. Reference 3 is for the software if you need a specific software citation.

  1. C. R. Søndergaard, M. H. M. Olsson, M. Rostkowski, and J. H. Jensen. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J Chemical Theory and Computation, 7(7):2284–2295, 2011. doi: 10.1021/ct200133y.

  2. C. Lee, S. Yashiro, D. L. Dotson, P. Uzdavinys, S. Iwata, M. S. P. Sansom, C. von Ballmoos, O. Beckstein, D. Drew, and A. D. Cameron. Crystal structure of the sodium-proton antiporter NhaA dimer and new mechanistic insights. J Gen Physiol, 144(6):529–544, 2014. doi: 10.1085/jgp.201411219.

  3. Oliver Beckstein, David Dotson, Rick Sexton, Shujie Fan, and Armin Zijajo. (2019, May 24). Becksteinlab/propkatraj: 1.0.0 (Version release-1.0.0). Zenodo. http://doi.org/10.5281/zenodo.3228426

Contact

Please raise issues in the issue tracker.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

propkatraj-1.0.1.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

propkatraj-1.0.1-py3-none-any.whl (18.3 kB view details)

Uploaded Python 3

File details

Details for the file propkatraj-1.0.1.tar.gz.

File metadata

  • Download URL: propkatraj-1.0.1.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for propkatraj-1.0.1.tar.gz
Algorithm Hash digest
SHA256 fd8be5abd9f5410ef77cb1050fa0a0acbe336407f86014ce09781b5ba88eebdc
MD5 047e77be74b0b61ee5551a18454dd987
BLAKE2b-256 7ac3582743483b1384944baca0d7a4b8260810004360699b3ec85d22ca3a4964

See more details on using hashes here.

Provenance

File details

Details for the file propkatraj-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: propkatraj-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 18.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for propkatraj-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 bc32422b6430d5b0de37b71ee810c84e1fd0e7ad372f21361a09039b1f641273
MD5 328702aa21008c08be289a809cf712dc
BLAKE2b-256 43c18b263f1121241d4e5714a79abf2a43784eb1615c9f19d38fdd9c29981870

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page