Skip to main content

Pure python callback/event system modeled after Qt Signals

Project description

psygnal

License PyPI Conda Python Version CI codecov

Psygnal (pronounced "signal") is a pure python implementation of Qt-style Signals with (optional) signature and type checking, and support for threading.

Note: this library does not require Qt. It just implements a similar pattern of inter-object communication with loose coupling.

Documentation

https://psygnal.readthedocs.io/

Install

pip install psygnal
conda install -c conda-forge psygnal

Usage

A very simple example:

from psygnal import Signal

class MyObject:
    value_changed = Signal(str)
    shutting_down = Signal()

my_obj = MyObject()

@my_obj.value_changed.connect
def on_change(new_value: str):
    print(f"The value changed to {new_value}!")

my_obj.value_changed.emit('hi')

Much more detail available in the documentation!

Alternatives

There are other libraries that implement similar event-based signals, they may server your purposes better depending on what you are doing.

PySignal (deprecated)

This package borrows inspiration from – and is most similar to – the now deprecated PySignal project, with a few notable new features in psygnal regarding signature and type checking, sender querying, and threading.

similarities with PySignal

  • still a "Qt-style" signal implementation that doesn't depend on Qt
  • supports class methods, functions, lambdas and partials

differences with PySignal

  • the class attribute pysignal.ClassSignal is called simply Signal in psygnal (to more closely match the PyQt/Pyside syntax). Correspondingly pysignal.Signal is similar to psygnal.SignalInstance.
  • Whereas PySignal refrained from doing any signature and/or type checking either at slot-connection time, or at signal emission time, psygnal offers signature declaration similar to Qt with , for example, Signal(int, int). along with opt-in signature compatibility (with check_nargs=True) and type checking (with check_types=True). .connect(..., check_nargs=True) in particular ensures that any slot to connected to a signal will at least be compatible with the emitted arguments.
  • You can query the sender in psygnal by using the Signal.sender() or Signal.current_emitter() class methods. (The former returns the instance emitting the signal, similar to Qt's QObject.sender() method, whereas the latter returns the currently emitting SignalInstance.)
  • There is basic threading support (calling all slots in another thread), using emit(..., asynchronous=True). This is experimental, and while thread-safety is the goal, it is not guaranteed.
  • There are no SignalFactory classes here.

The following two libraries implement django-inspired signals, they do not attempt to mimic the Qt API.

Blinker

Blinker provides a fast dispatching system that allows any number of interested parties to subscribe to events, or "signals".

SmokeSignal

(This appears to be unmaintained)

Benchmark history

https://www.talleylambert.com/psygnal/

Developers

Debugging

While psygnal is a pure python module, it is compiled with Cython to increase performance. To import psygnal in uncompiled mode, without deleting the shared library files from the psyngal module, set the environment variable PSYGNAL_UNCOMPILED before importing psygnal. The psygnal._compiled variable will tell you if you're running the compiled library or not.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

psygnal-0.4.2.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

psygnal-0.4.2-cp310-cp310-win_amd64.whl (657.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

psygnal-0.4.2-cp310-cp310-musllinux_1_1_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

psygnal-0.4.2-cp310-cp310-musllinux_1_1_i686.whl (3.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

psygnal-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

psygnal-0.4.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

psygnal-0.4.2-cp310-cp310-macosx_11_0_arm64.whl (727.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

psygnal-0.4.2-cp310-cp310-macosx_10_9_x86_64.whl (828.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

psygnal-0.4.2-cp39-cp39-win_amd64.whl (658.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

psygnal-0.4.2-cp39-cp39-musllinux_1_1_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

psygnal-0.4.2-cp39-cp39-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

psygnal-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

psygnal-0.4.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

psygnal-0.4.2-cp39-cp39-macosx_11_0_arm64.whl (730.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

psygnal-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl (831.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

psygnal-0.4.2-cp38-cp38-win_amd64.whl (662.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

psygnal-0.4.2-cp38-cp38-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

psygnal-0.4.2-cp38-cp38-musllinux_1_1_i686.whl (4.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

psygnal-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

psygnal-0.4.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

psygnal-0.4.2-cp38-cp38-macosx_11_0_arm64.whl (737.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

psygnal-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl (833.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

psygnal-0.4.2-cp37-cp37m-win_amd64.whl (649.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

psygnal-0.4.2-cp37-cp37m-musllinux_1_1_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

psygnal-0.4.2-cp37-cp37m-musllinux_1_1_i686.whl (3.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

psygnal-0.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

psygnal-0.4.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

psygnal-0.4.2-cp37-cp37m-macosx_10_9_x86_64.whl (810.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file psygnal-0.4.2.tar.gz.

File metadata

  • Download URL: psygnal-0.4.2.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for psygnal-0.4.2.tar.gz
Algorithm Hash digest
SHA256 18aad22a37edcb2f2f89ae836c46a2724bfe0e100270e81c22939161b9012efd
MD5 492e79da5fe9ee2812a6a1407ce793ff
BLAKE2b-256 e13cb569cdd4073a81f6739e8c01efa82992ebd9fec275144ab42b4bb32775e4

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: psygnal-0.4.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 657.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for psygnal-0.4.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 78f376210b621fa03610318c983944d0e5cdc859905900b7bcf71e280b318758
MD5 df35198f0e2c9569daff0073a82f32b0
BLAKE2b-256 0c6b39af12fc943d44909bda81535b90cf7b73337bd067aff24616d1050d20b3

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 afd09ad4b9f62f591470ff47102546de03d085aab59408ae8321262ba8b1c01e
MD5 e152fbe9f8bb172d852707c206282e1d
BLAKE2b-256 381bd21324fecc2424818430ccc094e63a587c0bc723e90d449c933418e4bb49

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5206037475f17e71ed2db893044c3b7de0c110d4883b3bcf989824cab01c67fd
MD5 ae4dcebab1506f39611d215b359ed4d9
BLAKE2b-256 09c532e9e1b80e1af588d0708483b1a40dbdcfe7f4f80cbaed0351e1a590111d

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3fe0c372058002c7b9309394e160c7c31b119c8bc5fbb6b21bfd8e67540b1cc4
MD5 9901eb425e617373bb5fc249dce9c02f
BLAKE2b-256 37dee491cade65c26b953ec4d2570555847e2f6ff118b8373b69a400f653d2ab

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 973e98ce8e0a7aee21c404080437b0e18b097942641699fd32922be580e6c2ec
MD5 a4bc3455c69fba3b8d82635b3029978e
BLAKE2b-256 e52f332beffc4857c26474942b336ed8be404421eb464ff1f45335a46ace982a

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 60e6e0277e671ecb19c310515528a7e36024dc8a3b0aaf86c652f7f364f45409
MD5 55d8e8aa28614dc462ace617dd50de6f
BLAKE2b-256 42af9487985c2821ebc573ee189e090991dad15d432af6b881622b07108195be

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b048180454bbca27fc8d3177addf2b061408663f135b93bc5566d2c33b161c82
MD5 9cc116d8259a7ffc530a3400c923339b
BLAKE2b-256 f6caad3f370747ec0b88e93817dd24abc3f6b6cbebe365473923db4672e4b104

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: psygnal-0.4.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 658.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for psygnal-0.4.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e2d290f98922a5c6e99d40144e2851c72acf26f3e6a5ef01f0b2e455a2bbe7f9
MD5 85e182dcd62f7cf8d6d490e440860890
BLAKE2b-256 ad17c1fedb9348b5b49da69b09d6a89b2be2242a74f2083e1ffcc683a2702dbd

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4b83cd4abd26deb0c268519ff7d5c05c32621ef297fb5debdcf846f5e6d23aef
MD5 c866a24a57dfb79ca8750bb9753df133
BLAKE2b-256 0531ad9b3bd9a094711afdec68fba72f52522410cc99623724d08d9d44532b50

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 15830f652106ecd0dd9d4bcaba96c0f798b5bb7f59e0ed8760b9eb971eb6df82
MD5 c50440d08debacf8256316d3664afce4
BLAKE2b-256 77d1f531955d78574294b95f6704e39ea279381ecdca074481bc4d611058c1c2

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc37c7f01e4e48dcd69972f3eedc7f24ab71535c4be5bd41fe29aa9686c622ec
MD5 b50c6a62003f6aeecfdda626b15e7993
BLAKE2b-256 73b55fb5eab5f5395a1d851460faa00c3d266a7a592a0976d019dfe58049d6a6

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 311146f4335a25ddbb008c379d30c938cf247c3e966054022117030f163f51c5
MD5 068cf8e62d7c7997895e81d7cad2a474
BLAKE2b-256 61f7c159eef6bdd6f6ea5294b82e7d2e41829b797cca3472186cf5c0b74ea8d0

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fca3632b920486036eb9f4f52a20dd409cee57701119fabe666f5ed7ba13a27c
MD5 2dc3b72ee7e02b3b2c2aac4dd19ddf1a
BLAKE2b-256 3f424f10fb65534321eb1cbecd41ac82b125b1537891a84cbf8f32e6b96047c3

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1b410644f1d99cdad0b35049b6cde2b504a4739cb6dcddc3f6c5e6e9c853deea
MD5 984cba8f7251b3da5861652fbb7e8b6b
BLAKE2b-256 b0acae57798bbbfb90a5ecb658e407666338c1aead7f7f78df26550f77daec51

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: psygnal-0.4.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 662.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for psygnal-0.4.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3e255c2653c478f81f69731b08012ad0bb3ea81e0d83fe9282fcb7ceb131e146
MD5 5b1cf78ab0101d2eea9870716fa3dc94
BLAKE2b-256 7f4ec278e37ac0e7e44de58ca344acbcf0f39ea66f081936203ef8e370c51159

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2fc45fe226928d5cd76551b7c9624840c66cd85d28c2a5fcdafcf13bc48ff12d
MD5 50e1451ad907cf80d60f8133e71c883b
BLAKE2b-256 34f0bee900de6309daf9802f9f26acd679759a4401a5887a1b7b4c6ef89a5ce6

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4050723613f69227957e5ca346b29802cea615a26d0b22e789e4836ba90f9989
MD5 bad8a0c21e13c48a92b2edb9eae475f9
BLAKE2b-256 d41354c8fed2340ca9e6e172a0f6ddd26f91c0aa60c589ede26e40de6e2b00c4

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ad53efee34f5b815a2abcf58efbf880946363dcbd7a5a54ac1db9c970c65c02
MD5 79dc7149260f8c030315da0df2324486
BLAKE2b-256 a76ba8fdca921d1e38970ee3f2335f99c5a9768e2d1d2dbe3b62449d2e604cb2

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9ab2158f096bd83763bbd8066b50a459c9207e9b314f689d1e09f19e27ba6b32
MD5 6f8a462639a5008b191f4a834109f70a
BLAKE2b-256 5bb84b8858e431b18af26f23c053c22a2bc3b4bff3eecdb482e39b78feac1fc6

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1b59ed6ea816041eb6cc9e92258ad3b1697b2b6fbca953e2b6cc51e8d5bd514a
MD5 1109578aa108c4d3297cc4c5262d955e
BLAKE2b-256 f2a5f4e3826a1ca3f3a678f5d58b893692c874c4139b5f18dec53c31bff41782

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1346fb502a883765b4c6003c88481a9b8435496e8a3fa95e3a5300b206624a0e
MD5 8f4ace83b47ff1e2ec7b344135d5256b
BLAKE2b-256 a2bb0474e047bb1a2c90c98ee715ec130d41c8f9881d4b453aa46c3d645d1812

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: psygnal-0.4.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 649.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for psygnal-0.4.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8708c76b1bf7ec3f0e45feb3686d6efb9cc01e6ba3c49cf29668c1f0bab3d610
MD5 231c6e079022d56b704a51866adadeb5
BLAKE2b-256 8e25deaec796b28f4871812b90c02ffdc1972d5bf043fb29d6bff99091d6ff68

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0210e54a930391059f21f0d5036512ad2b07afe234e7f912ba50cbab953c5206
MD5 857a3808198191a0434a321a7bb0012f
BLAKE2b-256 5930acb533be7cfe08d65086be8d6f374e779628925ee4b2dc15efcafc81665e

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f1d1b8cfd6a38ea3d5e919cdaf38fb51aa01eb57ebbee88b5cc8d5b5d1b9c13f
MD5 a41d99c6cbe23c8618769f680772dc7a
BLAKE2b-256 9a2e8fbec18bddcefc7917d585cb849c63ce4e0b512c8229d060a4934ccd27bd

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bfbae2392021400022a4c6032b5ff08e657d909e371f2f39fb575f43e2db1166
MD5 1666a8797d5d1d746fa05e9891759cd9
BLAKE2b-256 85520354cee1eba8e637560ed790d93dd82d5908022c1c48f7b1f204639d3c77

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dfb91edfa3a3aca9d5ab45e26560162416438c6e74f309cb1236adcc6915a03a
MD5 b3d0e29ee1bddd7c519c1e13508422ca
BLAKE2b-256 a3e3077ccb87b5037662e3160d5efb1b6056eb27cfed1be0ad1b0392add85c1e

See more details on using hashes here.

File details

Details for the file psygnal-0.4.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for psygnal-0.4.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 09c920c89f5d41e40057f8dd78546c600f8356f043de062c85404eb331de8c6d
MD5 d39c3715e2511ff0855b69d94abfa2c0
BLAKE2b-256 1e075cfe59402adba3519ac0f572e3fa44dc57c22d716e35def1293f1af24e25

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page