Skip to main content

A Python implementation of Rainclouds, originally on R, ggplot2. Written on top of seaborn.

Project description

Python tests Latest PyPI release Downloads Latest conda-forge release Binder

PtitPrince

A Python implementation of the "Raincloud plot"! See: https://github.com/RainCloudPlots/RainCloudPlots

Installation

You can install it via pip:

pip install ptitprince

or via conda:

conda install -c conda-forge ptitprince

or by cloning this repository and running the following from the root of it:

python setup.py install

Academic use

To cite Raincloud plots please use the following information:

Allen M, Poggiali D, Whitaker K et al. Raincloud plots: a multi-platform tool for robust data visualization [version 2; peer review: 2 approved]. Wellcome Open Res 2021, 4:63 (https://doi.org/10.12688/wellcomeopenres.15191.2)

output

History of this project

This is a Python version of the "Raincloud plot" (or "PetitPrince plot", depending on the orientation) from R (under ggplot2) to Python. The Raincloud plot is a variant of the violin plot written in R ggplot2 by Micah Allen. I found a tweet asking for a Python version of the Raincloud plot, and I agreed to give it a try. Alas, the Python version for ggplot2 (plotnine) does not allow to create new styles in a comfortable way. So I decided to write this package using the seaborn library as a foundation.

Then I replicated the plots from the original post by Micah Allen, in Jupyter Notebooks and transformed that code into a Python package.

Since then, the package has received some publicity, and is for example listed in "awesome-python-data-science".

Changelog

v.0.2.x

* PtitPrince now relies on seaborn 0.10 and numpy >= 1.13
* kwargs can be passed to the [cloud (default), boxplot, rain/stripplot, pointplot]
                 by preponing [cloud_, box_, rain_, point_] to the argument name.
* End of support for python2, now the support covers python>=3.6

Plans for the future:

  • ask seaborn mantainers to add this new plot type (not gonna happen)
  • add a "move" option in seabon to control the positioning of each plot, as in ggplot2. (either, added in ptitprince)
  • get RainCloud published (done!)
  • add logarithmic density estimate (LDE) to the options for the cloud
  • add the repeated measure feature

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ptitprince-0.2.7.tar.gz (12.2 kB view details)

Uploaded Source

File details

Details for the file ptitprince-0.2.7.tar.gz.

File metadata

  • Download URL: ptitprince-0.2.7.tar.gz
  • Upload date:
  • Size: 12.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for ptitprince-0.2.7.tar.gz
Algorithm Hash digest
SHA256 bbd19d4f8615935ac1b750651907303913fbdddc3fe864c1cb80faa3a2a3acfb
MD5 bf0cc367dea160517def509d9a0256a4
BLAKE2b-256 32f204600e6dac80ff8bb05df961f99592825b5ae2d9fdd41dd918e196e1035c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page