Skip to main content

A tool to work with pre-computed large pubmed embedding.

Project description

Pypi project Pypi total project downloads Paper

Building PubMed embedding, automatically.

Install the package

As usual, just install from Pypi:

pip install pubmed_embedding

Usage examples

You can retrieve embedding for PubMed IDs of interest as such:

BERT

from pubmed_embedding import get_pubmed_embedding_from_curies

pubmed_ids = ["PMID:24774509", "PMID:15170967", "PMID:7850793"]

bert_features = get_pubmed_embedding_from_curies(
    curies=pubmed_ids,
    version="pubmed_bert_30_11_2022"
)

And the result is:

BERT

SciBERT

scibert_features = get_pubmed_embedding_from_curies(
    curies=pubmed_ids,
    version="pubmed_scibert_30_11_2022"
)

And the result is:

SciBERT

Specter

spected_features = get_pubmed_embedding_from_curies(
    curies=pubmed_ids,
    version="pubmed_specter_30_11_2022"
)

And the result is:

Specter

Citing this work

If you have found these datasets useful, please do cite:

@software{cappellettiPubMed2022,
    author = {Cappelletti, Luca and Fontana, Tommaso and Reese, Justin},
    month = {12},
    title = {{BM25-weighted BERT-based embedding of PubMed}},
    url = {https://github.com/LucaCappelletti94/pubmed_embedding},
    version = {1.0.14},
    year = {2022}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pubmed_embedding-1.0.14.tar.gz (30.0 kB view details)

Uploaded Source

File details

Details for the file pubmed_embedding-1.0.14.tar.gz.

File metadata

  • Download URL: pubmed_embedding-1.0.14.tar.gz
  • Upload date:
  • Size: 30.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.9

File hashes

Hashes for pubmed_embedding-1.0.14.tar.gz
Algorithm Hash digest
SHA256 4a7b16fe671c00f7725d4bfa5ab1bbeb1afea7e84e2d19f10e7fd21483317f65
MD5 da227d8455868c13b8ae3b60d022b850
BLAKE2b-256 a41204dc1c9ee422036cf60786e0e7c2cd738fc15af3e39229b056274da80f38

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page