A tool to work with pre-computed large pubmed embedding.
Project description
Building PubMed embedding, automatically.
Install the package
As usual, just install from Pypi:
pip install pubmed_embedding
Usage examples
You can retrieve embedding for PubMed IDs of interest as such:
BERT
from pubmed_embedding import get_pubmed_embedding_from_curies
pubmed_ids = ["PMID:24774509", "PMID:15170967", "PMID:7850793"]
bert_features = get_pubmed_embedding_from_curies(
curies=pubmed_ids,
version="pubmed_bert_30_11_2022"
)
And the result is:
SciBERT
scibert_features = get_pubmed_embedding_from_curies(
curies=pubmed_ids,
version="pubmed_scibert_30_11_2022"
)
And the result is:
Specter
spected_features = get_pubmed_embedding_from_curies(
curies=pubmed_ids,
version="pubmed_specter_30_11_2022"
)
And the result is:
Citing this work
If you have found these datasets useful, please do cite:
@software{cappellettiPubMed2022,
author = {Cappelletti, Luca and Fontana, Tommaso and Reese, Justin},
month = {12},
title = {{BM25-weighted BERT-based embedding of PubMed}},
url = {https://github.com/LucaCappelletti94/pubmed_embedding},
version = {1.0.14},
year = {2022}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pubmed_embedding-1.0.14.tar.gz
(30.0 kB
view details)
File details
Details for the file pubmed_embedding-1.0.14.tar.gz
.
File metadata
- Download URL: pubmed_embedding-1.0.14.tar.gz
- Upload date:
- Size: 30.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4a7b16fe671c00f7725d4bfa5ab1bbeb1afea7e84e2d19f10e7fd21483317f65 |
|
MD5 | da227d8455868c13b8ae3b60d022b850 |
|
BLAKE2b-256 | a41204dc1c9ee422036cf60786e0e7c2cd738fc15af3e39229b056274da80f38 |