Skip to main content

library to read/write EDF+/BDF+ files

Project description

Test Coverage Docs Build PyPI Version Conda Version Conda Downloads

What is pyEDFlib

pyEDFlib is a python library to read/write EDF+/BDF+ files based on EDFlib.

EDF means European Data Format and was firstly published Kemp1992. In 2003, an improved version of the file protocol named EDF+ has been published and can be found at Kemp2003.

The EDF/EDF+ format saves all data with 16 Bit. A version which saves all data with 24 Bit, was introduces by the company BioSemi.

The definition of the EDF/EDF+/BDF/BDF+ format can be found under edfplus.info.

This Python toolbox is a fork of the toolbox from Christopher Lee-Messer and uses the EDFlib from Teunis van Beelen. The EDFlib is able to read and write EDF/EDF+/BDF/BDF+ files.

Documentation

Documentation is available online at http://pyedflib.readthedocs.org.

Installation

pyEDFlib can be used with Python >=3.7. It depends on the Numpy package. To use the newest source code from git, you have to download the source code. You need a C compiler and a recent version of Cython. Go then to the source directory and type:

python setup.py build
python setup.py install

There are binary wheels which can be installed by (use pip3 when available):

pip install pyEDFlib

Users of the Anaconda Python distribution can directly obtain pre-built Windows, Intel Linux or macOS / OSX binaries from the conda-forge channel. This can be done via:

conda install -c conda-forge pyedflib

The most recent development version can be found on GitHub at https://github.com/holgern/pyedflib.

The latest release, including source and binary packages for Linux, macOS and Windows, is available for download from the Python Package Index. You can find source releases at the Releases Page.

Highlevel interface

pyEDFlib includes an highlevel interface for easy access to read and write edf files. Additionally functionality as anonymizing, dropping or renaming channels can be found there.

from pyedflib import highlevel

# write an edf file
signals = np.random.rand(5, 256*300)*200 # 5 minutes of random signal
channel_names = ['ch1', 'ch2', 'ch3', 'ch4', 'ch5']
signal_headers = highlevel.make_signal_headers(channel_names, sample_frequency=256)
header = highlevel.make_header(patientname='patient_x', gender='Female')
highlevel.write_edf('edf_file.edf', signals, signal_headers, header)

# read an edf file
signals, signal_headers, header = highlevel.read_edf('edf_file.edf', ch_names=['ch1', 'ch2'])
print(signal_headers[0]['sample_frequency']) # prints 256

# drop a channel from the file or anonymize edf
highlevel.drop_channels('edf_file.edf', to_drop=['ch2', 'ch4'])
highlevel.anonymize_edf('edf_file.edf', new_file='anonymized.edf'
                         to_remove=['patientname', 'birthdate'],
                         new_values=['anonymized', ''])
# check if the two files have the same content
highlevel.compare_edf('edf_file.edf', 'anonymized.edf')
# change polarity of certain channels
highlevel.change_polarity('file.edf', channels=[1,3])
# rename channels within a file
highlevel.rename_channels('file.edf', mapping={'C3-M1':'C3'})

License

pyEDFlib is a free Open Source software released under the BSD 2-clause license.

Releases can be cited via Zenodo.

https://zenodo.org/badge/DOI/10.5281/zenodo.5678481.svg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyEDFlib-0.1.33.tar.gz (2.1 MB view details)

Uploaded Source

Built Distributions

pyEDFlib-0.1.33-cp311-cp311-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyEDFlib-0.1.33-cp311-cp311-win32.whl (2.2 MB view details)

Uploaded CPython 3.11 Windows x86

pyEDFlib-0.1.33-cp311-cp311-musllinux_1_1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.33-cp311-cp311-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyEDFlib-0.1.33-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.33-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.33-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.33-cp311-cp311-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyEDFlib-0.1.33-cp310-cp310-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyEDFlib-0.1.33-cp310-cp310-win32.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86

pyEDFlib-0.1.33-cp310-cp310-musllinux_1_1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.33-cp310-cp310-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyEDFlib-0.1.33-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.33-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.33-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.33-cp310-cp310-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyEDFlib-0.1.33-cp39-cp39-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyEDFlib-0.1.33-cp39-cp39-win32.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86

pyEDFlib-0.1.33-cp39-cp39-musllinux_1_1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.33-cp39-cp39-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyEDFlib-0.1.33-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.33-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.33-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.33-cp39-cp39-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyEDFlib-0.1.33-cp38-cp38-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyEDFlib-0.1.33-cp38-cp38-win32.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86

pyEDFlib-0.1.33-cp38-cp38-musllinux_1_1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.33-cp38-cp38-musllinux_1_1_i686.whl (2.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyEDFlib-0.1.33-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.33-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.33-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.33-cp38-cp38-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyEDFlib-0.1.33-cp37-cp37m-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyEDFlib-0.1.33-cp37-cp37m-win32.whl (2.2 MB view details)

Uploaded CPython 3.7m Windows x86

pyEDFlib-0.1.33-cp37-cp37m-musllinux_1_1_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.33-cp37-cp37m-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyEDFlib-0.1.33-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.33-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.33-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.33-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyEDFlib-0.1.33-cp36-cp36m-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyEDFlib-0.1.33-cp36-cp36m-win32.whl (2.2 MB view details)

Uploaded CPython 3.6m Windows x86

pyEDFlib-0.1.33-cp36-cp36m-musllinux_1_1_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.33-cp36-cp36m-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pyEDFlib-0.1.33-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.33-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.33-cp36-cp36m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyEDFlib-0.1.33.tar.gz.

File metadata

  • Download URL: pyEDFlib-0.1.33.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.33.tar.gz
Algorithm Hash digest
SHA256 09106f0527ffd1e66fd8087629865305b0b34e90793fa6735c278f804403291d
MD5 b73bde9cf2c1b6c1efb3bb90ec3e8ad7
BLAKE2b-256 d4a57028725714d205d11b2f07fbdd076526510615b2358d79579d383a3b827b

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1bd84cd77948450c08cbf978483619363c8a14e0433b06974249e1ab0e9b1c35
MD5 0ff2e627b19d000e170f90c5835a2d6b
BLAKE2b-256 fa55f3c5b78cd3cfdff36d0cc95df89491e27bbcc4011d39b61ad10c17ed530e

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.33-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.33-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 8c517dd5767cc764fa9b501d047060db0f4eb1b136b2e009c7cf5069f495e80c
MD5 dc2f7cebfa6b9757b26b216333bcf4a4
BLAKE2b-256 99be1bd33c94d54758ca4ba298e0ebb776c63b7c5d88140279569a24428f3576

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 722041382b1c1bd64e7e66d50f3ee7197f5e11855dcc85555fdfd24485b4e4ba
MD5 84732d2f65254e34d98c72f55056ac55
BLAKE2b-256 7690cada9f5379395e01b8036eb020a55b5b9817f4ed4dc153261f5ee2283a18

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0c751ff9dd59bd5baddadf6377720b3543cd5237dcee638686838661c708a9aa
MD5 9abaaf38a893bee8c2e96a52cd1793b4
BLAKE2b-256 65f03f342cea276c93827e743e0d32dba752a421a9bd227cf49b2c862f8bcc8a

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 77370feadf38966b7a429bbc6582b700959bb9895b8ec7935788db23f7439d6c
MD5 22365dab0737096275592215140f193d
BLAKE2b-256 c0827b3f6812076d7b35274f2c2c296feb6048b05211abe3f2b3f72f0fd9c5ab

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 37bb37bb5283996373c4cab27fe741bc21709c65bac97d03b2e133561f77b99d
MD5 fe05007f28e7fd0255b1899e3dd91ed2
BLAKE2b-256 c99c5216abf0d7b03fda28e1160e445f591b6daff988e141b8bcf54844c0f812

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d37f003abde1e246c125cd9e8b303283dd502da184950e1c65f6402b438409d8
MD5 e0370fd64753101b0124cfc39c31cc04
BLAKE2b-256 d4a12488d58982d07c65e72e034a7da41d3397059c3aa433fde654f9a4f18f0f

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a655bdec12ea311edb84e9a14d6e84ef49ad705e2e53bcf393a801fd7ec1cad0
MD5 959d3f37c7141de2f0537dff41f103d5
BLAKE2b-256 21c12b674e8f2aaeeb5ff9506dbab05902a115dc8dbf1f6805d82d91f51f8c41

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7e722773271eb6a646886a96480e15881cee26617ee809fa409df5a81404e11f
MD5 18ff69cc46a6713a4571d764e08fe941
BLAKE2b-256 83422251298bacead530ab1939612f37208e6291f0371f91b688f67d462dce85

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.33-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.33-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 1416ee1f69649723af7171ca8514c77bc76a71d8e8eb15b969b4983892c9e07c
MD5 b9e97fe22935436239ecc8febabf6222
BLAKE2b-256 9a3012d9209548df93931c295e165e21168daf0cb6834a8caaff11621c7e41f2

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ecfdb109af4b1b0e8dad23bd0569aa10a7be46a2601f492856606fe8a53581e8
MD5 599dd00cc630eecda1302c689fb667ec
BLAKE2b-256 ccb001e0ffdb98c3b27088d01afd3322f895b565c03fe57a2394c6c6841b9a54

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4254c36d4db274d4c34ef4099af17ea01456681582e5b4ebeb243722fe0ba46c
MD5 afce1779407050e8e089267fc5406b1e
BLAKE2b-256 faf836e629343b4475c9d13c87f658abcce6df79249794528dbf0ac75831b0e3

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dab41a970cb0af754d0406fa219f973b74bf24a874cb685dd942782f58814c17
MD5 78f252eccd5fec53341158b7319d9a72
BLAKE2b-256 6b790e477ccccbebbfccc4cc4ca4baf9ac3fe53d4c12e52eee9f193c142afbcf

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 af82cfbfd94b9d826fd5947225d0424ab84cb6aa38424b0b176a3d4084bd5d5f
MD5 6ee88c9e7369e0221f2bed179dd46c24
BLAKE2b-256 cf7d7d66c3efebe339d9cdb3e86e9ec54da3413e3d1cb3f135572b1d517293a0

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f718928127b80fc7bf31282a14080acacb0791e86b8267500a96649865b4ad24
MD5 0b021fbc4f52b4679729007568881a0e
BLAKE2b-256 c150a7d8a8c2881a469e9e571948be115d62291eaea01ca00efc5fae62c946cc

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c1fdd1272237da1dafdc4de070128c1628750da66417a70b7f8e02f1054be79
MD5 406be0e1b380eddd415b9734f568fde7
BLAKE2b-256 edf063854dbd6d86af1405345e6ef4c0a91fda73d38f6725ed53a453ac5eaec4

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyEDFlib-0.1.33-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.33-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ee8d6ce6e1cd3c067870fa227c191f4f4d38019a7be6e186bf1a06e2ec4222fb
MD5 cc572db4db66275f56f177513a733d42
BLAKE2b-256 0c14af41e86c527437a4209524bdd2286b01f2c88bcf6594ff22a82b70ac1a42

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.33-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.33-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d4fdd928e3303fdcd31ba34deed7d1d8f8dcab99b93dfdbe22c50d79f974c49f
MD5 f09526fa1f3679eb9cd4950aa95c06cb
BLAKE2b-256 c9255c403264995757702e3992eb000962ba347f3290c2c25e118a788360a29c

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 05870c81700491d5fc913f345c6ac1bbb04d192a395879111d1b5019d35c13b4
MD5 314b7b080e69196b89f240214d4a76f3
BLAKE2b-256 eef4f91cc7ea19102888c5bdae00426a163888e1a030f16023a1ede8401daded

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e9ec48b5959891a66d42dae2c094c5fc1af67ac446ca846a2d330c02fdf4de6c
MD5 e77b854ceaf4cb0c215ba360628c511e
BLAKE2b-256 496772ea849aabe9853aac05ece47fb8c7959b3b1bf30a8c1ac8da7c94031bc5

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bde9488b0574cdccb04e5befba07a7585bc5c111f894da85ceb02949d32f16f8
MD5 4ffe71c52be2862fd1eba9e006529947
BLAKE2b-256 7b937cae944132307e8f6e405f31d315a870865d9df701167fb342d94786b09f

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 497a489f0f60f6dce65a4e07ee77730127fec2f079443ef4e43aea44c2873734
MD5 b0731717315e15077602179911bd3464
BLAKE2b-256 ed679ff9740783b646be0b5d9e63e070df6025b6d901ed726a1494b2a369b033

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8e150ecbb768ff4db8eea391ef9fd01e625522f5b700e49550bd007f4381bb46
MD5 c77bec21869fb7bb389d517e4d494a20
BLAKE2b-256 5c0a9b39a09df3ee2c66f2adb53131dd8cbfdb43cb453ef3596b03916a5f67b0

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f56863354b67280e719be71608b02e0006f31468862df18a192ff238008fdb7d
MD5 5fb15de59a4ebca74b6761d7ae64c039
BLAKE2b-256 6e8f1291562ec519cff4447484ec7204bea4a7f2c5a2ae7a6644e68895b00a73

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyEDFlib-0.1.33-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.33-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 105b90b73f65d36dd43cb0e76aa793fcba83c73ae1a20c49dad3a60adccbb61e
MD5 2291f848cc2b49891fce41b23908da2a
BLAKE2b-256 31d3fcce15875d4b0d317faa0298baa0e8a5beaaa2f9e6cfc671f3775b162f15

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.33-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.33-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0cd92df5bb82d9fd8ddfd9737537809fa2af152eb8d9d481c5d7f61c00834787
MD5 e7a1cb83481319c0c551c76eac9254ba
BLAKE2b-256 7e652b886d61af00c841eb98ef7f1171e23e4ee81acf611a9572de43656d125f

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 73c88a9d173e53f58205276105aebb9b1a023fcca826e2712e9e34d7e69b8110
MD5 9e3f610b8a84266c6c08aaf5509db5af
BLAKE2b-256 3468853da0db0eeeae2677dcecc44a1f68db272430bee8fb1716352860edf041

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e359aaf4a13f542153d22cc6a069f6e43ebae37788671d946a66d78d029dc57f
MD5 4e6217cb3384c578a59be0fef87ab395
BLAKE2b-256 f32fea340e7eeacbda8072f6188a6d9cf0bc30d6eaea35afeb921653abc2ff0d

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 05b9ee870552431ed2701f0aeff98ae58828c80f80b79ec119e4eb907e1ca10a
MD5 c3ddb6e6167c11398f0bc50543255ad7
BLAKE2b-256 93813487449e8527f8607edf4fae26297c50afe1cd4d7733f37f3321f413be96

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 acbccde4bdefc7ae9ef24d5bb9517054d41ecd65574b741ad23b93284f0b1044
MD5 e9f272e8557b23e9f31e74cad02040b6
BLAKE2b-256 08662acd2cbc9a6e00d0654edd0215ec6cae2169bd00086637f70ef3ee5e09c2

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a6713a60441603e55c6ef83e91bf7d366a3c0118f1b573b4471d0f21e544a6d2
MD5 58dacbf7310c019363609ccac85c97ae
BLAKE2b-256 007d44e4a1630070e7db7a252754903c1a6b413a7d771fa4539c0030cc8e66f8

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 505cff2373b853ebc378e7962d3097e6309de45e57722be31fd630c67bbd40b2
MD5 62e5e778ee2ed2a9e0cf368b0e1f93df
BLAKE2b-256 e60c472725ec0b802a0d256cc1fd5635e32371fe8762daac01a1f32a08612dd3

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c8346a24a59540b476aa13a64cb2de243f2d4ec795eded426b4adec27d43eb3b
MD5 808e155c97faddd82942b93fe59ab7cd
BLAKE2b-256 c4679ceea80d793fef81062c6c846aa626dc42d675f678ffa6ff9696bc47b111

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.33-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.33-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 639f62ae4e7317bf2d84a80a53d8379f81627c96fb2635f386e4d0e555240030
MD5 08b5722ed90dccdce5c60059556d68cd
BLAKE2b-256 65cb85d3da3247ee7a1698929f0233aee6407c9a2e196567a9949614168ccf13

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 98f2b8d10d6de5affebbf3ed5b813e0579a6847b73048ab75a4a208680815708
MD5 9561535f483dd7f2181758830fef9e43
BLAKE2b-256 7d97806ed4fa2ec8752506fbf81ef117c4b28edee130ccd2b908f2df289e2fba

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e4963374ee776cb93266907454b31294673dfb91e815f92452e701ebfe524f46
MD5 67e498c3c3e11c8207b17f9fd27cecec
BLAKE2b-256 726779c465b8848747916acb04064835e8d3ed60f441bf2579b193ef81d22f8b

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd406db4a6aa2e45fa0b8d3df7db7102382db2806fa5e79e013d60926023eff2
MD5 900c4f1db8c44d8b1036a1344764a425
BLAKE2b-256 4422502fc21949c2942212662efa34503f3bada3bbf5e06893463e886998f4a5

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c66452954a28904f1702da5641c7ce3972fec288f05caedfc494aba3169c57ca
MD5 68ce36400dde1deb0f2094958cbc0171
BLAKE2b-256 6cabd1f1e545c24833ae8547e687af43b2fba52cc675608e479b2e6709e20fab

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6e326c5eaa5abd05d736f424425e82f14722fa9f5d81c86219af443133b12534
MD5 c82a172504b50d1e175201a52144ce5e
BLAKE2b-256 c90b716abf5db829fe39586a9ae0ae28bd4b685e158158666d0713a669aac766

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5cac182b360c353013305772136f27419642a7d9abb21693c3aac40965eda84c
MD5 2cf69c13493314c89eb4278ce7e7084f
BLAKE2b-256 cf718c71aa53488454adad6c49bcbd7cd10609b3f264ebf66cf2fb693abb592c

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 69817a8362be84043dc107f6f06f32bc9344750fad922ae12269467781e0b15c
MD5 2c5fc23434ff133b840a9aafb4312c63
BLAKE2b-256 889211569088f793e6851e3a1877106a4f473fa8e828cc58a64c06e65fe8b84c

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.33-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.33-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 c759a6865cc12dc1ec83db451ab505386821412bf34d733617b754a4370fde01
MD5 d9895eb0ae7e90e40d2269f35e6892e0
BLAKE2b-256 0b665243c8630a8b0511352ed9809a60c083e545eaf8ece2e26e82785bc34813

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1561bde5a3f998feff3cb3f6f0606aa29c7fc2c4d1ca9be6e91b91cb70911338
MD5 91b31a9de5362285928751f1c3b88096
BLAKE2b-256 63bb306d1984dcfb7ae00aa0ddd3767fd03f3f7cd317248302321b1b3c640638

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 85e1f1302ba771e86ae4d7aabb550ad217a5fa5a177cc157a3af6c8b478c24cf
MD5 03a9c96cd351c1981ddcd5eec7e1288a
BLAKE2b-256 bfdb9d12dfb3a32f9e26060372d83c7a26201c0b9f5729639cbefc4c4ef7cb7f

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1bcb756b34652251e943455a71d254fb05ad384749f25766056febaa94eaeace
MD5 26402490975190191da5744ee7f6c6fb
BLAKE2b-256 5e75fbf23e3dc37f30b986953b8d16507470d60d03334100ca7531a1b2194be2

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 134bdd7e11d9404f395119e2cdea4403a6ea685df3486a12406460a7df948869
MD5 58736d868cf438b28c057d89ed83ec05
BLAKE2b-256 184c010b2ca5db6dd31694fd693a5513793c1e7ff12072a44c295f793ccb7ee8

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.33-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.33-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6533dc19051208eccc3aefb5d2b2547590f89f371a5db9dca413e207c4c572cd
MD5 bc0b6e11c4af14a31f408dd4da6fe46b
BLAKE2b-256 073c72e2f3760f2bffab52c2101ba974d3b73badbe64680760219616b6cbebb8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page