Skip to main content

library to read/write EDF+/BDF+ files

Project description

Test Coverage Docs Build PyPI Version Conda Version Conda Downloads

What is pyEDFlib

pyEDFlib is a python library to read/write EDF+/BDF+ files based on EDFlib.

EDF means European Data Format and was firstly published Kemp1992. In 2003, an improved version of the file protocol named EDF+ has been published and can be found at Kemp2003.

The EDF/EDF+ format saves all data with 16 Bit. The company BioSemi introduced a version which saves all data with 24 Bit.

The definition of the EDF/EDF+/BDF/BDF+ format can be found under edfplus.info.

This Python toolbox is a fork of the toolbox from Christopher Lee-Messer and uses the EDFlib from Teunis van Beelen. The EDFlib is able to read and write EDF/EDF+/BDF/BDF+ files.

Documentation

Documentation is available online at https://pyedflib.readthedocs.io.

Installation

pyEDFlib can be used with Python >=3.7. It depends on the Numpy package. To use the newest source code from git, you have to download the source code. You need a C compiler and a recent version of Cython. Go then to the source directory and type:

python setup.py build
python setup.py install

There are binary wheels which can be installed by (use pip3 when available):

pip install pyEDFlib

Users of the Anaconda Python distribution can directly obtain pre-built Windows, Intel Linux or macOS / OSX binaries from the conda-forge channel. This can be done via:

conda install -c conda-forge pyedflib

The most recent development version can be found on GitHub at https://github.com/holgern/pyedflib.

The latest release, including source and binary packages for Linux, macOS and Windows, is available for download from the Python Package Index. You can find source releases at the Releases Page.

Highlevel interface

pyEDFlib includes an highlevel interface for easy access to read and write edf files. Additionally functionality as anonymizing, dropping or renaming channels can be found there.

from pyedflib import highlevel

# write an edf file
signals = np.random.rand(5, 256*300)*200 # 5 minutes of random signal
channel_names = ['ch1', 'ch2', 'ch3', 'ch4', 'ch5']
signal_headers = highlevel.make_signal_headers(channel_names, sample_frequency=256)
header = highlevel.make_header(patientname='patient_x', gender='Female')
highlevel.write_edf('edf_file.edf', signals, signal_headers, header)

# read an edf file
signals, signal_headers, header = highlevel.read_edf('edf_file.edf', ch_names=['ch1', 'ch2'])
print(signal_headers[0]['sample_frequency']) # prints 256

# drop a channel from the file or anonymize edf
highlevel.drop_channels('edf_file.edf', to_drop=['ch2', 'ch4'])
highlevel.anonymize_edf('edf_file.edf', new_file='anonymized.edf'
                         to_remove=['patientname', 'birthdate'],
                         new_values=['anonymized', ''])
# check if the two files have the same content
highlevel.compare_edf('edf_file.edf', 'anonymized.edf')
# change polarity of certain channels
highlevel.change_polarity('file.edf', channels=[1,3])
# rename channels within a file
highlevel.rename_channels('file.edf', mapping={'C3-M1':'C3'})

License

pyEDFlib is a free Open Source software released under the BSD 2-clause license.

Releases can be cited via Zenodo.

https://zenodo.org/badge/DOI/10.5281/zenodo.5678481.svg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyEDFlib-0.1.34.tar.gz (2.1 MB view details)

Uploaded Source

Built Distributions

pyEDFlib-0.1.34-cp311-cp311-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyEDFlib-0.1.34-cp311-cp311-win32.whl (2.2 MB view details)

Uploaded CPython 3.11 Windows x86

pyEDFlib-0.1.34-cp311-cp311-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.34-cp311-cp311-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyEDFlib-0.1.34-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.34-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.34-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.34-cp311-cp311-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyEDFlib-0.1.34-cp310-cp310-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyEDFlib-0.1.34-cp310-cp310-win32.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86

pyEDFlib-0.1.34-cp310-cp310-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.34-cp310-cp310-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyEDFlib-0.1.34-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.34-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.34-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.34-cp310-cp310-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyEDFlib-0.1.34-cp39-cp39-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyEDFlib-0.1.34-cp39-cp39-win32.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86

pyEDFlib-0.1.34-cp39-cp39-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.34-cp39-cp39-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyEDFlib-0.1.34-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.34-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.34-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.34-cp39-cp39-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyEDFlib-0.1.34-cp38-cp38-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyEDFlib-0.1.34-cp38-cp38-win32.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86

pyEDFlib-0.1.34-cp38-cp38-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.34-cp38-cp38-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyEDFlib-0.1.34-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.34-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.34-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.34-cp38-cp38-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyEDFlib-0.1.34-cp37-cp37m-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyEDFlib-0.1.34-cp37-cp37m-win32.whl (2.2 MB view details)

Uploaded CPython 3.7m Windows x86

pyEDFlib-0.1.34-cp37-cp37m-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.34-cp37-cp37m-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyEDFlib-0.1.34-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.34-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.34-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.34-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyEDFlib-0.1.34-cp36-cp36m-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyEDFlib-0.1.34-cp36-cp36m-win32.whl (2.2 MB view details)

Uploaded CPython 3.6m Windows x86

pyEDFlib-0.1.34-cp36-cp36m-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.34-cp36-cp36m-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pyEDFlib-0.1.34-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.34-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.34-cp36-cp36m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyEDFlib-0.1.34.tar.gz.

File metadata

  • Download URL: pyEDFlib-0.1.34.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.34.tar.gz
Algorithm Hash digest
SHA256 8ea5793c213ce6ad00f1651eb527707a9285f5d2a52dc2eafeefcdd7be217a9c
MD5 c70e418af82d166dc638f73e947d392d
BLAKE2b-256 922d36c90757a91fd9615715cfd224e7027c48550a7a4a018fe2c1cfa94e38c6

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 65f328ee52e9e13ddd747a7827d325e1eed0ff18009b7c139ae1c46e9599fcc4
MD5 ceb546cd403fbfd9a31e9d412b8508ef
BLAKE2b-256 abaaed49d4ac5a983bbda790be89494cca476bb7a8762b1aa44700906a06546f

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.34-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.34-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 08ff074f52f56223b6886fbb47089d574aeb9f94752d9b93cce1afebf55722cd
MD5 62438c8d9ed36a572af47efc9ab05cfe
BLAKE2b-256 5197c41488ac09e0b6dcf48f5b93800910c09228b3f502a77c39647a48523165

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e3dc6194105b4eb1f4018122d8ff5a0f89f23f8041bb39da56077dd6894ecc60
MD5 21bdc69e0273bcb898987fa9f75126fc
BLAKE2b-256 ba5a61ad21455ad81ce538ba60721f027a04b1f23447ed2e09b7934b54650646

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2ee650b7d8b6c57af6f7fd8ef7cf49ca5ad14f5fdaf6b2a7746c9d0ca26ce238
MD5 052b2a5982160fdd5a85c2fe45d4dd43
BLAKE2b-256 78e01142dad185cdede36212cf1165ede99acdbcf7e31419299db27ad7f69615

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 422361f6753fae64a7c8841b38dc7452edf2064bce0cdc40f5d18aef45d376be
MD5 2f6c643d38e5a494692e48c91f31d55d
BLAKE2b-256 c3743518bd2ae44d3c00e561fcfd94eaaa2d8858d19f3101e5442d4d27d6f5ba

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dba9efb1d03be526eaca5f5b0f26816c55fc7cfb452d5057f4d738889f4acb2f
MD5 9777a9f07ea493f8e4c4c8373eeca051
BLAKE2b-256 c004f1ed1bc8cae6b71833a591b1d9668bbc905a87292a6c91ea465ae6126fe0

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ab8ceba689c5c522aff5a16931f9d00b3afa52096230174d70493a1ef9593efe
MD5 c78016b8049780aac61a9b75e9a4617b
BLAKE2b-256 1d3015bfa2497c1d7d283df46ce4094f8bb48cc79541f96c2d050fc05235a2b4

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 784320962783f4c928e63a8ea6dbb17123462b09db6db53b4f44b36709323bfa
MD5 89452a5a30f1474d2d9bd1834e9bce85
BLAKE2b-256 6905cfc7a8b4a92bf2798c8a866cf7212987daca9830cedfa96733c5072b694c

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c9e32dec671acc8c2edac637533378cd89fd96b8ce25843398e3299cb8697467
MD5 b8433fca366ee066f9adc7eb51fa2d7c
BLAKE2b-256 ed397647a07c8f5b2cb9597e5258df18ed25f575939900b7366c96785648ccb6

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.34-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.34-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 815e47cd048f9644dc58bf2dd46ac5c3194e8715074ac7a70fe142065a649973
MD5 25bd112daf5fbb5e964d465027141e49
BLAKE2b-256 50fbebbe77be24f7e758e01fd7493ebf40c368186ec3206f1ab0ede1a797172f

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8e65f57d79b0f3f2d441644f1f54745ba6a4d8e0f4496c1756be655aad56db7a
MD5 f7bd1920e2215e701ed682d8bd959a67
BLAKE2b-256 df9b884b474756c91908a3969e1fb6bd394157b729bc90d3591408756365abb1

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3bb2865ce01f2f2ea08717737566d67b66c402085677ba57d39201aeedd8db80
MD5 19a007ffa698ac3ea54545a58177e5ad
BLAKE2b-256 4a8af6685d68fc89f339f09f35ef75dc079224280ce58efd7f3e6b4a2486343b

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dba18a9e69e081634ec6801af4ec939ff6df2e7bb7a823ced6673ae3f293b40c
MD5 34b01e53e4e773e94c9b5ba315ba9c43
BLAKE2b-256 8cc2345a1803661b60ebbb8fdbaae5278a5d7902f20fbe2d39eda7544c1f98be

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0cf7e60d6c4574bf37fa24e113d0455aaaf71d2fe26ff71447bc3f7b11c9c0df
MD5 fad4a18e84875c367397e2652983b1c8
BLAKE2b-256 a9e9dae465171d7cb2c98f82ea99820d36e53e553b61d6f7b8871bda11b4a845

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3e4b253b6841a1cb752c78f1e438ee6aa132f52f2277ce9c16cf090c76820541
MD5 63ddd7bc8694f61940c5d08339f88b56
BLAKE2b-256 2b6a5c337e32b77dc5b43ced681cbcf0c22c59459092ca31f76e7084e960ec16

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 82b0d9be1e0509a3b26652fe8ba41d4c71a9abc15cdd44c3648e1ed536bceaaa
MD5 b879d44bed9d19540e6f090c7f9ea2bc
BLAKE2b-256 d1bb67564c614e300728682ec588c78743093e2617d4b8e175d1005e9b1645d5

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyEDFlib-0.1.34-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.34-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e9bdc8cade7b0c6d7e7c18065a73948cf82801863328afd09397e1b5edb24a39
MD5 7b79ce4168cc7d7776fe293e10258e32
BLAKE2b-256 c719046920bf7fe48a71ad6b39d289fd7905ebbb22dc6be22794bc9ec97af5e2

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.34-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.34-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 987f8baa9304372dec6ba2caa47c74948cc9cbef7647f58147fd70e36c791fe3
MD5 9d151da37b585a901517aa15ff56364c
BLAKE2b-256 459c06c4a9b7a32fd7cee3130b026348d00e53c3955a614f7358a5c874de8b78

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6cf47425ca69f805ac3b9746891fa13002f3f98dd982d91b353c6097381da9c3
MD5 ebe682ffb3c34f6949b48b6d555cd578
BLAKE2b-256 a556429413cd047d05e0337ac2f0eebb1568031fee9faa2b26ce6a0f35c7eac8

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2ad3c20209c674afb942fa1f4debd9accb9d041ab51cd6bac7e12b6da741e705
MD5 73f81b543c1d8076920a6caaf608a19a
BLAKE2b-256 950670d9c6bfbb66e9a5900f046606c36229e63cbf61fb02991a173e73b98aae

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e0bf13972746f34e2f09ff4151b2c24040d7dd32f79582827383612c264d937
MD5 c2aa0f1ff4a689ec0f3800217b6f4afe
BLAKE2b-256 07c894a6dff8252dff4dea3f22635a23c640f2d7e85062092676453ca788b8a0

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a62468303b6411f49bf33c0cecc4fc6aa53eeb2ba08070f975d314dd4cb0f669
MD5 27f75d4c71f6fdfa67995a8104ca1316
BLAKE2b-256 574bb43c2f9fabc89baa786083db872862a5b46797f64333c69b7e20866f56bd

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d049c72bc6b0210023b49d958f9f0d737e8fc6f9e66bc836d60ad5d1d21250be
MD5 15ffda0d95f60392a92dbb4f372807f3
BLAKE2b-256 e3e132953741b2a6473272ebe4a6cc5044c281f5eaee1d99d59fa9b37e0545fd

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a8b28baa0a0cfe3fe24b9b51bb7f15245b59b387c87b18a90935f136d9d22173
MD5 f89a9e0fc8e22af9d6946920822de707
BLAKE2b-256 1d02b9273828744fb4f9f289c565169bf185a396de407069f1b0f983adc4925e

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyEDFlib-0.1.34-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.34-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d6f41ad5ddb3003e428e2c768075a454a9c1bed185466009c5a96715156b3696
MD5 2373d2c36a258b0d51d9627b4098cfc8
BLAKE2b-256 e02df021fbe9a4b0b382f1ec8b31447ef0f6087f4af3aebd6ef7a4442c1899ce

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.34-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.34-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a458422aebc6537dff6a0d95dc68a97d3e89b5e2534cc635d9e63acff56dd5e2
MD5 59f4f923cd8e2b77a914336a56bd174a
BLAKE2b-256 0c6f5006ef1a4e8920dfe069fe18b049bd5d2101892970adf0bab6d0726e76a3

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1ebe80421ad806ef529d90f24cd231c0844eed48bdbbe9635745beee3fa4f5fc
MD5 11bdeeacaf69260424453fec09fd01c3
BLAKE2b-256 cdf82665aa9c35dd728ab2d894586298c685229cf56eccb6e95da02409e65928

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3a12c4ecc68d2eadb794c096b7d05b94f847145e36e9563ac2d1f7f2e2d56f72
MD5 76e439864cfd52f713044a6bccae81b3
BLAKE2b-256 afed770ec3e3bc7a113b430974b5c57cf7038c2f5650d431d75865cbc7c8537b

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e1efc9a080db2206796ab9b4d8344b4ece83ba1af18b39e0db6bbebad7bbe7a
MD5 903c30702345a4b3ad8ab6dbc026b711
BLAKE2b-256 6b37d8e754b78e3b288fd40b02a883f76b71fb429e3d7f5179d6ce3099ff1fb9

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 64c8983cb6640a82c0bfa7cbaa8b260c93219d694bc68e4b00661e85a787cbd2
MD5 fc1fdeeef1a95e8964b3fcc36345d51b
BLAKE2b-256 4adfef2a61becac79314d02a8587b6214fadd0ade920ad97a598fcaeec821c83

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d5ef5f002f82c25ae4beb679a6fa7ee50fdb370435c10a6c0c0dbcfb0a09a952
MD5 89318b24ba5b59c47dfa7f52906ae8b1
BLAKE2b-256 f3c9742ac7ae22fc7183e099868c9f968b5e79e776cccc83622ff125290f39f1

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b795aa795c7dd8b780143ebd75eb80935bd8d805925522ea90c79748c088cd6a
MD5 e641779968e43d408bd3037a9d734249
BLAKE2b-256 7eb2cfd4b9f5b0cc7f8d6723ec29180a0660c4db28f061f70d38c9f7fe96120f

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ba175915548176d1c63d354ee2ba0a51564ee5d6253eed841017e7e56644c713
MD5 2a7ef8d51a413205184843f2a67b2dd0
BLAKE2b-256 bea839735e0972c75d6da8c7e591e6fa261abc1b60d5c5485b8ea8c136278b1f

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.34-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.34-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 f13338ed8477694105d60ef076719eb14101511695b1fe3b3d7850880ab665a5
MD5 59d6e887d699a30341de45f66f94ba85
BLAKE2b-256 d5c31a3580781ad6fb1782748e8fc1c53f72e6dfb98ff1addda7838af2592ab2

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d86071ae0f7bfc0ff995a95b6c0a06adde99343fa3b88edc90154e36340b5d8a
MD5 066fbe13dde77b4c9a7dbd8149132d7c
BLAKE2b-256 f33c595823bd885c7bb817843d3656ebe099c8068df1764b854b8a86946b0f91

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7d52e29ba4aa40503a3d3a40429f43ed33747b1ddc94272a432e9f7650ac37d5
MD5 39278e7f4194df87bdc3ef8d14b32f03
BLAKE2b-256 55d56ded3c6b6c07b727360e048d35e1220362498cf8d10846595af03a985251

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9fb4ee8241a8e2c176416eae0cd84d93c05afab3e2f5ccc1587da4b8a7a23ccd
MD5 e272df01c4fe0a296fff34c61612bfb4
BLAKE2b-256 0d52433b45ab71fdc7b2bc4bafe188636c683e4e7be51bd032bb13a6a1261234

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f88f76887698c2e4892cdce43947c8fdf3ea35a0b46eecbe0106ce2110429edc
MD5 1c75db44ce7c79549e7f663d223d4ff0
BLAKE2b-256 47db53df796f21ca26cdf7c42f0acbbb7ea4159914fde5d6ad797b5cf8665333

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 685cbd8e432eb99951157e01223e73eadbc642ceb0a22e70756879457fa47963
MD5 1a301dfb5c3e24c7e7146bbf27f71361
BLAKE2b-256 1096873c88f24c3006f6a26d74c44216009b4f64fb84ca9b8dad8b5a8bd8f909

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a909b96337feb8d3d1eecf0c66f0a046af1bc8f746cc6496109c2079fb301c09
MD5 56fde7cb688aeaecd42d770676d1800b
BLAKE2b-256 1009bc472213690cbbf299ab9975879d2b7c2f29dfb69b4588a27f4201a7ae1b

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5299c11fabc2be35b4ceb81662ea19d8f830e777da29dfb43f3d28b222475c25
MD5 a6922e1e0921eec494aff45b0ae28d6c
BLAKE2b-256 aed437dc336f191460a2b3f031d0e325e1659891cf68500a1efd28c3c6897193

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.34-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyEDFlib-0.1.34-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 ce549787665404c749660a833730fc74c048f212d3fae2d2738174724a6e5643
MD5 4f79ac9b4ed48f6b3993698313488a6a
BLAKE2b-256 a639175c8109b143da6ea056e3580312ee3e0159653d185a06180b30fc72d815

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1d78a11a0f2ba02d175b1730a56736f30286c11a92c1bbe09652288436ec9d3f
MD5 bdc87cc934b6fbad48e216483791a359
BLAKE2b-256 b9961739cf79ed340c742750b704f44c950bfd6bbec2cbf40af9bfec73cfc273

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 189b64dbdea2922dfde7940f9e2d0cdb675ed430bd3999693925ac3dfb967c40
MD5 d42647d4035a95cb1f66c22455d448aa
BLAKE2b-256 0bdfc7f8a439b20ff027f7e2e90a73768af8e08ba2253c9c8fefa588ecec4bbb

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97a33b9f20d53de0169b88c38d0509091f19f367b7795c13d20bd6b58ccf7a2c
MD5 0fd1440af7d4630305c1a2e632dcaf7b
BLAKE2b-256 d284d9662ec0dbc1713aa1644a8903a7c68a87cb1ab2c0fb58ec9c629af983ba

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e8ba958d4ea804658c9606a738cc94955164ed3539e033f5776a560fe157f439
MD5 74065852777f4ff737d1cc92cdcdabfc
BLAKE2b-256 dc9f096d1762c267ea344af1bd06906a98bb0c648a86b8f9648bfdeea16fb988

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.34-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.34-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2cd29521603a6e931d7bcfdaaf0fa87c2eb748d76903c6ef023938f95da880d9
MD5 05f9c733044941ce0e533bf4d2ec9a5f
BLAKE2b-256 32c65f69b0f440e6d3231360895432c70e4a1aa6e671e9c419f2df971cc00f0a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page