Skip to main content

library to read/write EDF+/BDF+ files

Project description

Test Coverage Docs Build PyPI Version Conda Version Conda Downloads

What is pyEDFlib

pyEDFlib is a python library to read/write EDF+/BDF+ files based on EDFlib.

EDF means European Data Format and was firstly published Kemp1992. In 2003, an improved version of the file protocol named EDF+ has been published and can be found at Kemp2003.

The EDF/EDF+ format saves all data with 16 Bit. The company BioSemi introduced a version which saves all data with 24 Bit.

The definition of the EDF/EDF+/BDF/BDF+ format can be found under edfplus.info.

This Python toolbox is a fork of the toolbox from Christopher Lee-Messer and uses the EDFlib from Teunis van Beelen. The EDFlib is able to read and write EDF/EDF+/BDF/BDF+ files.

Documentation

Documentation is available online at https://pyedflib.readthedocs.io.

Installation

pyEDFlib can be used with Python >=3.7. It depends on the Numpy package. To use the newest source code from git, you have to download the source code. You need a C compiler and a recent version of Cython. Go then to the source directory and type:

python setup.py build
python setup.py install

There are binary wheels which can be installed by (use pip3 when available):

pip install pyEDFlib

Users of the Anaconda Python distribution can directly obtain pre-built Windows, Intel Linux or macOS / OSX binaries from the conda-forge channel. This can be done via:

conda install -c conda-forge pyedflib

The most recent development version can be found on GitHub at https://github.com/holgern/pyedflib.

The latest release, including source and binary packages for Linux, macOS and Windows, is available for download from the Python Package Index. You can find source releases at the Releases Page.

Highlevel interface

pyEDFlib includes an highlevel interface for easy access to read and write edf files. Additionally functionality as anonymizing, dropping or renaming channels can be found there.

from pyedflib import highlevel

# write an edf file
signals = np.random.rand(5, 256*300)*200 # 5 minutes of random signal
channel_names = ['ch1', 'ch2', 'ch3', 'ch4', 'ch5']
signal_headers = highlevel.make_signal_headers(channel_names, sample_frequency=256)
header = highlevel.make_header(patientname='patient_x', gender='Female')
highlevel.write_edf('edf_file.edf', signals, signal_headers, header)

# read an edf file
signals, signal_headers, header = highlevel.read_edf('edf_file.edf', ch_names=['ch1', 'ch2'])
print(signal_headers[0]['sample_frequency']) # prints 256

# drop a channel from the file or anonymize edf
highlevel.drop_channels('edf_file.edf', to_drop=['ch2', 'ch4'])
highlevel.anonymize_edf('edf_file.edf', new_file='anonymized.edf'
                         to_remove=['patientname', 'birthdate'],
                         new_values=['anonymized', ''])
# check if the two files have the same content
highlevel.compare_edf('edf_file.edf', 'anonymized.edf')
# change polarity of certain channels
highlevel.change_polarity('file.edf', channels=[1,3])
# rename channels within a file
highlevel.rename_channels('file.edf', mapping={'C3-M1':'C3'})

License

pyEDFlib is a free Open Source software released under the BSD 2-clause license.

Releases can be cited via Zenodo.

https://zenodo.org/badge/DOI/10.5281/zenodo.5678481.svg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyEDFlib-0.1.36.tar.gz (2.1 MB view details)

Uploaded Source

Built Distributions

pyEDFlib-0.1.36-cp312-cp312-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyEDFlib-0.1.36-cp312-cp312-win32.whl (2.2 MB view details)

Uploaded CPython 3.12 Windows x86

pyEDFlib-0.1.36-cp312-cp312-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.36-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.36-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.36-cp312-cp312-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyEDFlib-0.1.36-cp312-cp312-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyEDFlib-0.1.36-cp311-cp311-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyEDFlib-0.1.36-cp311-cp311-win32.whl (2.2 MB view details)

Uploaded CPython 3.11 Windows x86

pyEDFlib-0.1.36-cp311-cp311-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.36-cp311-cp311-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyEDFlib-0.1.36-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.36-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.36-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.36-cp311-cp311-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyEDFlib-0.1.36-cp311-cp311-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyEDFlib-0.1.36-cp310-cp310-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyEDFlib-0.1.36-cp310-cp310-win32.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86

pyEDFlib-0.1.36-cp310-cp310-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.36-cp310-cp310-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyEDFlib-0.1.36-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.36-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.36-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.36-cp310-cp310-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyEDFlib-0.1.36-cp310-cp310-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyEDFlib-0.1.36-cp39-cp39-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyEDFlib-0.1.36-cp39-cp39-win32.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86

pyEDFlib-0.1.36-cp39-cp39-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.36-cp39-cp39-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyEDFlib-0.1.36-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.36-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.36-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.36-cp39-cp39-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyEDFlib-0.1.36-cp39-cp39-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyEDFlib-0.1.36-cp38-cp38-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyEDFlib-0.1.36-cp38-cp38-win32.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86

pyEDFlib-0.1.36-cp38-cp38-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.36-cp38-cp38-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyEDFlib-0.1.36-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.36-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.36-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.36-cp38-cp38-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyEDFlib-0.1.36-cp38-cp38-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyEDFlib-0.1.36-cp37-cp37m-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyEDFlib-0.1.36-cp37-cp37m-win32.whl (2.2 MB view details)

Uploaded CPython 3.7m Windows x86

pyEDFlib-0.1.36-cp37-cp37m-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.36-cp37-cp37m-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyEDFlib-0.1.36-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.36-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.36-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.36-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyEDFlib-0.1.36-cp36-cp36m-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyEDFlib-0.1.36-cp36-cp36m-win32.whl (2.2 MB view details)

Uploaded CPython 3.6m Windows x86

pyEDFlib-0.1.36-cp36-cp36m-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pyEDFlib-0.1.36-cp36-cp36m-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pyEDFlib-0.1.36-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.36-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.36-cp36-cp36m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyEDFlib-0.1.36.tar.gz.

File metadata

  • Download URL: pyEDFlib-0.1.36.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.36.tar.gz
Algorithm Hash digest
SHA256 3ae985444e673285e0eae552696205daf36164eeea71010ae35be3e2a4bc7525
MD5 7b73856e72c8644dc50e1a45f3944c13
BLAKE2b-256 0fa1f117b95757574de0d6108f4070f4ca06b5dc7c41baa0193d6865bd6cda2e

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b6e4ae1c9a5ea6914817b5cd983281582c6ea694407267df138e2d8daa8f0f56
MD5 8bc634dfd13cdbcce674f4ac49b08692
BLAKE2b-256 e09a14463a7a7010f8301d2e8ad6777fbbab12d495fe664ff7fccffe3cc2ca95

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp312-cp312-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.36-cp312-cp312-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.36-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 f6c5a1df36e21f78803eb9a0fa2a1575b0c0d1981e119d30583537ea611e9a37
MD5 37aa21410aa685224624365a91f9116d
BLAKE2b-256 0cb88291fc37f6821e6ca1f098bece8a3e7081fb406c91ba77503ab714de363d

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 87282683b5d0577835dbdf9cb8a63876ca34814af54fd68fb7b88d86c37e826b
MD5 7ebf804e0d6274a7349814811b204e7c
BLAKE2b-256 86672f4b724d73245f95f13b1f9b42ecd190a4be9b6f8b9ec2f951cc57c992cf

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 57e2c7ee7294a3bc98c8921525397d2bebe1583e1db9655403aab3b62e4d2052
MD5 cd65c9e41b3de60faeedfe6721c957ce
BLAKE2b-256 c6a7e3e1c3b362f2d19ef700efa59f0d9c751ed9f2cd87221261d00f2a80f0e5

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5b396ae5d4de3bb9194a1d2092d5a2a303162aaa05745be880ace7f9a56dd43a
MD5 f8cd3de0b4887d9ad074304844b3da64
BLAKE2b-256 c6bc29859e5e04ff0613c31db85a7d785ef63b24f83740ba230e042a0f27d0da

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2b52829fa3cbe2aeb7330033087ce5b5100736896293e9ff77424d04e8046010
MD5 457380fa4ad69389125e5891549b9689
BLAKE2b-256 0f955dab9463db57a0675dea1bcf7df8f28d152d61e86d3322450b27e9774469

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8dd40bd76fecb2a3e9f26a4949b1065180501d1378cccdb04b9a2b19517e3ef0
MD5 122771e28f6c05983aab6c743a1d81c6
BLAKE2b-256 d8737c2354997ca07b8b0e69da3323b91e83ffb6a0608f0740ab40dfa59e3e95

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3669fee423367cb6288197e8aca14b62471acd2b96da797def5c6f7dedf65729
MD5 95e3ca07400adb4a35b08beedb253772
BLAKE2b-256 926e59252e54c4acd0658b41dd831afa38f65f53ede2ebfb877dd71289064741

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.36-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.36-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 8ae3ef80864f35adfb1aee69769e9ba4b9aaff8a503629a4af726965db5e8d9b
MD5 5ac47b4aa5fcec03d6b559de61fc528c
BLAKE2b-256 5663cd3f459b165f98427e3cad3bab77cc62b1e3a9f80c0949cf10cde4b39046

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 10e3bc3ed43d7d458a75ae0eed167a0138f88f256e5324a486b100131ac552f2
MD5 319b30e7c394998f8fe5be71908a1b6b
BLAKE2b-256 67ffb04fc70502c37dd1af34a38171395e33f62d244878a30df4c615871c6cd2

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 29b7527cafdacc48b2b4c5731932ad615e46ea1c750b3a9ac79c4ed785749c91
MD5 86d54c80d192a2a8fae62f421f6eaf3d
BLAKE2b-256 39d343ae045d925a16cc176edb9a5982886eacabf6c2067b2c765e723119c0c2

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ebad1f3879f8c45bb90af840cbe752ed9880124d6132542ee1af2df98efce56f
MD5 9129f037f0510e27f26b3e1fe42d2317
BLAKE2b-256 66f68dfed1154fd658bfdf5c99d5a294a7144c4141464b4ed79a1acee52c13a7

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e6b42d165a8f7a1a6d3ba33c780c5867e693e6b1ad49765202fd7edaf44c51be
MD5 8dd5913d419010a9ccecc83eb303638f
BLAKE2b-256 166dfeba678969217ae413bfbf2bf59fa110c8a41a1e04ba444547a989377cc0

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 206d40a54cd5e5a51d21663063c78e1bd539abf887a7467064b26dbfad344024
MD5 b05d060b268f0c18f1b1029ecec93ef3
BLAKE2b-256 6b7251ea79d673b5ee48c1656cde1b71d1e236668c5eea6419a2813000665281

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0ba65782dcbfe3bc44421616c864bddf90a7bbed62fc73222fba5dd9050e7c71
MD5 2a4775a6d10e1371221f8aa03d1a4095
BLAKE2b-256 d6e40c0fd96740c29fe246854bcb80724aad87bb79310ab79621fcb667e10d2e

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3eee13fa551f195498c484b46a555b45463f4db34aaee79324803d1d3e21ac42
MD5 edae7fc9570b14e9b3bd9956841a602f
BLAKE2b-256 d7ca07c2ef5df2535ae1a868a8a616f522015a54aee716dc6085e2f834e8acdc

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b67b4c6f03898be3a64396d24eac15a43d5ba0849c70aeda3ea3a4d39854878c
MD5 9a89eab15397ca0c5f983674757e1ef7
BLAKE2b-256 aa4482b4c5919094921e323e58f4b8c7031cc1c0b9a6edb806bd628ccba76eb7

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.36-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.36-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 cf74f8863c7bd4a4fb86189b2af75a25d166b6014d8c781c95d36fda7422dc14
MD5 580bc4a05dca4a0fa4785f1f7a898f16
BLAKE2b-256 ac84984e73b2ffd81fbd014dea437bb327004f8406e4f42da7d91c177e884ac3

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3715218f77240b59e4635acf4663f7d2be48164030d171c9dda85e32a1fa3ec0
MD5 9dec315bf07b7ea14a9c342b5745c5df
BLAKE2b-256 9fcd66676e421a2850e718c260d874303131519b8571afc03053743617430ce9

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fdf8db7c3f2dfdbab0f400624c64e5e5e76a16f422a19f7c8054787111410659
MD5 caceb6912d4360bda04efcf99602ec94
BLAKE2b-256 705724bf662bcd644ff7269ca3c894fee1d3185f62412e6641d2247bbd073280

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d62e0cb042a942dc2d2f84560a704f8528c0069fbea333e5dda0ec7b87d1021d
MD5 553dfd5948f4cda1ef9d0473916f25f4
BLAKE2b-256 d1bcae0bb62a8f68c58b7c5ff1ea4a7ad1fd6649fcac06b5eba646e0aae9bf9d

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4c20cb8a0caa3a9ee2f2e52994ca2f04c7d0fbcbfcc530940dd724d936f0cc04
MD5 a635d271180f8bae5fd0e76d7512572c
BLAKE2b-256 b373cffe03704322808b3d5c260c4bfcbd7ef835b94b61bb19b59576abf32e0b

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e8b3f47e78622066f4e7886bc1927869e07503286886ea3bc6e9c2b7aa74dd08
MD5 7a020b803fde15d8d909d65c43e088c6
BLAKE2b-256 67db95541649c98e482d23fb7d7ba386cbff68b88ea850c9446a2e82d4465ced

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5fe695d2e14c4cd5139affd81c47b7d81e35177d29ac3c0bf1ac7aabc7ea19c3
MD5 112d80aec5a3d08ce220100d27207442
BLAKE2b-256 a01ff8d351b0e17d72ba8cba336286984eb6dcba97485bcce33602434b2fdd13

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 152e60546b26ad8bafc2611a7e8d62e5df46256592a6909ecf4ae23a8ad78916
MD5 32c55d6507e861ec8bcfcfe0b9ad9398
BLAKE2b-256 574bc080ea2b55cbcaf457ab26ca0cf15e351cd81fd7c86566ff035d73e59aca

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyEDFlib-0.1.36-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.36-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0668836d5907112969b6091ebb584e68787de1ec93187a9d44a525643f53c7d0
MD5 f074df6b3c4e98280db687ec60ac5980
BLAKE2b-256 45abdf617db97b0232e0b216ace700678c0513fb13c2cdcc8c6b14eff480094a

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.36-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.36-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e7680deccc03b1c33dc437fcd37dd3bd3ccdf02c90c4aa8251283c871b90dbb9
MD5 c43855a21a10e54ba045c630d00bc0c2
BLAKE2b-256 60018d8976540844714ab9aec5fd8508de821c59ea89d817fb7732c7a375a485

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2d8b0bcf702b5370562e77b08093599a378d518ea3ccbb2302716b1a577c6cc2
MD5 43955e77e977e33202800dedf33a864c
BLAKE2b-256 568564db6d8c1a56cadbd68381dc26db7821d5299b7a83ca618330da2103b569

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 eb69e8e0a1f27747398fe4e56453ff3cbdde6baaa19be66c7cb36c013304ad4d
MD5 670be9995ab46835f6e5d9ba7093e881
BLAKE2b-256 f33b170865aa75de34c8da0c1d5c1529787dbcab0bb6e98d9c6d57bfcb0e731f

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d2adf8c490ae5e4fedcf1c84a8578e3b6d091a14047cf56391d7fdcde750ff2
MD5 ecb167ad41182383a45bfb671136bea9
BLAKE2b-256 6f1eb1844fec9b67b48b8800c591b8484e4e9c5c00d8c573366872263986b53a

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5e4eba9ffba29032f46fe91c067c35e089a12309054dbc735c06492929025352
MD5 c05b5dca1056ae372b332af58b6d7a61
BLAKE2b-256 367cb64ba43f1188ab6859bd26fff4fce305ebf3b2418782d7743d74180696e3

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 792b7836dc6849e632e3f38102a0477e3cd547481b2ababe5aff56d0338be81a
MD5 5f276053ca4b38f78926c609cb4ceac5
BLAKE2b-256 44b3bb0b598ae1c1faad75b586d7f0491001b81ace144ad031a382a526d5bb6c

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4263487d999f170b9adee93e8dd50d090a5b289402d81bb387933cf29f99f173
MD5 62eb48d5008c585d70cf6cdd075140e7
BLAKE2b-256 8f9519e5165ad99e19300c74c42acf3f7e248575ff3a3b152f80ae0318ede559

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fa3b81a41cac1177e563f666b341acf959bcb07f5124b4caecc6d6064871956b
MD5 ece9c9a367af136eb2a8c49274842896
BLAKE2b-256 4b7234c8941dd20123b10f19908c18ef1947af4fdec36256c137da61ef8420ec

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyEDFlib-0.1.36-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.36-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ec2de909ab45ce385d2e8ab2258edb5f6244189105a779f009d87f2b64aa2150
MD5 63e4d069ccdeb50a20aa46e880e5e9dd
BLAKE2b-256 06b039f15d9ec25a9a0f96b79a51d6c9cda467e9ae201c6a3d7b5329a7fefd78

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.36-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.36-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ae41a7fc38bf6ea3398b1c6a118a00fbd37a940354034d55a5778ab1cc5f8414
MD5 20d1411e737e7889d31dc98d069cc87e
BLAKE2b-256 c63eaf40c18cff5613cc570bb457adbb0ed0f25a8d0b9d085cc33a749e19642a

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1e15304d392e36faad282ce66aaedf81721c2002ec941bc53fabbd2397b99950
MD5 828f0a80ce438f3c81d41ddbfed6166f
BLAKE2b-256 541bec2abb8ff8fe247fe1a4f84446aa8ece75d1bbc9b19aa67546d608c83919

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 53a6ac8d9ef72258ee2859551c30c3759dbc0eee3b816b994a7100a179d9ddd3
MD5 fb036ae14c72dde8bc849eb192023a02
BLAKE2b-256 551cdc1a6704236114163c861a9ccc28b869ebb8c34dd87d682fdad97833e2c0

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 43aea0dd6669b8f5613b4839277a72b4a2bcd71b7e8d6bbb4ceddb16d1fb6946
MD5 f0ace1f7634b977f6ce9260c256defa3
BLAKE2b-256 a852129301c62698dcb4afe08fa6da60bd5a024c8f31cd603171c49e6d75eddc

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f1f982f45f46966ce59c800b2e4b5eef75f1834975c2c084812bcb9ce576af58
MD5 73df4f0c0d64672aa0e8a8b1e7d1a29e
BLAKE2b-256 8020563deeee43ee16cb16f6dfa8cf5f1d5155fc4b57ed2196ba4adc42ae9620

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 85e35e03fa837283e56839fd0657f3e5d5292e503317c555abd1351c3c5334bc
MD5 e81dfabe2819c00f9822b05fb8582ccc
BLAKE2b-256 943b201cf875b417c3f5ba28b69e0bc5eb584ce965589073a5667626f6d1cf70

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 60a156f9d9d4aa8b54563c92c53eb6268ba8238be8d41f31ecd9a2c98479c00c
MD5 9e4064f83bfb7b0bc1f9176dbda89a4a
BLAKE2b-256 a7bff59694f2dd4748245620e5c0bae4773361b8aed1d1cb0736f381179f974d

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac916d03cb8b70e1136eb4020337154ce7fa5eed45ca8d152776d4215e2aa0ad
MD5 3539e83b4a911fee7ab97c64cad06421
BLAKE2b-256 2982d01a0f218d85c5740fedb0298babf47cef20e685618b985ccb7f9871c063

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1d55dfb910f45e3eab04ff3ac38f59c8d053ce300e0a14bb0cdeafa91f7fc98e
MD5 2437b0e90bab0bef051ba274e333f0cc
BLAKE2b-256 1d8d253a8b638a35b1bf92fcd1c779f9ae59664e3af8d9d117348e531c0ed527

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.36-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.36-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 433b6b673175972379f1aadba100070fe9ae1a2eb08fd559049804043bbfff37
MD5 fb796dc473803cdc8e79ec39c5567066
BLAKE2b-256 f2bb3cba21484fc7c2111b472d7009183c66a60602b3c02fef5c792fa7b43e2a

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 29a43f4940b8fce081bce36dbb9464a8481da3dc064892b1818172ac0b1956ef
MD5 0827f3761186d7ab96dbdcdba477ed8e
BLAKE2b-256 8aeaa05fc723602a4c17840f563af27020a2f285f52a29f1ea634e21d334f366

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0ecf093fc66e6c8e8a27f65c9e98dc6f5f9546f848728bab5e0529b233ddc289
MD5 142c49576b320da6ca5167e4d21213a5
BLAKE2b-256 68736b8e01ec09e32f4bd81d2b3be8f534a6b8f382c974e81853b0451d9f2564

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 374dcf7b0dcd7eca2f7dfa613cdc600e78f96e5be26c5b54ddeee9c6483cc204
MD5 71561cf524b7ab610eacc4653b6e50d4
BLAKE2b-256 e20475af4999b63650abd0994aae319505e4114b51cceac2cc4da6a4de80e171

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ba4507f64f54766d0615d87c1c8f00ec80801804a337638bbfad1f09f5c1f84f
MD5 0077dd8e8dd579de3f32cc495f488386
BLAKE2b-256 039887e20147120be6f01cac4410710d0786dbc9328cd788db3c0098e1ec43c3

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3630169505475f906181b0a98c06bd8555cdd45d2a5a09c39012e5339416304b
MD5 8c58b31977d01dc5373e622b01f0ddf3
BLAKE2b-256 ae9659f032f495776d7016899d528543032927337c9eb280218eca6f5f4762a9

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cf04365f28a18b0f3c9f7bb4383199eff43c85c2ebccc57b709328a030b31824
MD5 cb824f7a9d29993c99d9426fbef2cfc4
BLAKE2b-256 fc940a1bf9857f3dba6b1ffff7ac1452397603bbaadfb49d0e90cc83b0fc607d

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3d198528e7af6a51ad45ef032636177c5d8f8214cbf5ba4cc94937b7e3d6105a
MD5 2dd340c65af3dab3697e098f1bf922e8
BLAKE2b-256 cd7877bb98da7b443ec13878f8c4ceb8a8a50154f781c54b24dd67de16ba0a3e

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.36-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyEDFlib-0.1.36-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 7cd60d5783135e5344c8e87dbe055e9242420e7d866212f2e74a8e77c316200b
MD5 3c2261fd5adb82b922d38edcdb1545fd
BLAKE2b-256 b5cb9bde4523fb72a73384ae99bd5a313155eb3d271b5f882d3317fa8ce3831d

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8cefa3019ccc5b79aa385e3127e7ee35745ef0d882784ea517d7e8c07940f512
MD5 6ceb31ea889a127470540d5ed70392d2
BLAKE2b-256 b0ca0e7281addba655da7d9564ae885b85e22498fa367ef45e3bc67c1d2f8885

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 37501bf30d5844a5526a877d0c5509fcbb62d9cda4e4f3d9991f73d78a8184aa
MD5 32454cb9010e31dad7ad1cf45e7dde9c
BLAKE2b-256 79215c8127ce7012e3b293906dbf5a832458d29850904a5cb0ba7852efb2fbcb

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b8764798afcead0c8d3e9560712693b57ab010851eb936b917514c2630751fe
MD5 41f3fe355d9628a8d0d8b3954906ef6a
BLAKE2b-256 1ff69a07c986bab0accb47ebd88c3c85043bd57d5c6426dbeb7f450117d6cc66

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2d8647dff7c77704420a4ac4b0d50a5910ad6f823e06dce1dca0fdd6918cd210
MD5 42ccb0bc2d468b05d3c1b42f471b112e
BLAKE2b-256 81f0e144e075e8f805ccf2b92c0786809833f80f123a3c9e7e7c8ddd027c1468

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.36-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.36-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5fe9ba81cee0115c9db077de29f4e8a045d1a9afa97a2c4689239965d1b60f36
MD5 274c297a30510acfbd476c697d6b84d7
BLAKE2b-256 45843d3b2503be96fc8fbf81c6879fba72702a5c8b0506d6cd9f2cd57d7cb84f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page